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1. Introduction 

 A large literature has attempted to disentangle whether cross-sectional differences in asset 

returns are best explained by exposure to systematic factor risk or by asset-specific 

characteristics.  Our paper argues that, for the explanation of mean returns, the distinction 

between risk factors and characteristics has no empirical meaning, and that advantages of using 

one approach over the other are mostly of a technical nature.  However, for the explanation of 

variations in returns, it is possible to make a meaningful distinction between factors and 

characteristics. Given a natural choice of a characteristic-mimicking portfolio (CMP) as a factor, 

the covariance (or the factor loading) of each asset with the factor is proportional to the asset’s 

characteristic. It follows that using either the CMP or the characteristic to explain mean returns 

provides identical results. But the CMP varies substantially across time and, potentially, can 

explain a significant degree of time series variation in returns. If so, the CMP has value for 

hedging purposes and the factor formulation may then dominate the characteristics formulation.  

Following the influential work of Fama and French (1993, 1996) it has become commonplace to 

explain anomalies in asset pricing with covariance-risk factors constructed as portfolios that are 

long on securities of firms with high values of a particular characteristic and short on securities 

of firms with low values of the characteristic. In this formulation, the erstwhile anomalies may 

be reinterpreted as rewards for risk associated with the constructed risk factor.  

Starting with Daniel and Titman (1997), Jagannathan and Wang (1996), and Daniel, Hirshleifer, 

and Subrahmanyam (2001), a substantial literature has attempted to differentiate between 

covariance-risk and characteristics-based explanations for asset returns, with varying results.1 

Ferson, Sarkissian, and Simin (1999) question whether it is possible to effectively distinguish 

between risk factors and characteristics. They employ a variant of the Fama and French approach, 

first suggested by Fama (1976, pp. 326-329) who pointed out that estimates of risk premia based 

on so-called Fama-MacBeth (1973) regressions, potentially using characteristics, may be 

interpreted as portfolios of the assets, with the portfolio weights depending on the characteristics.  

The risk-premia here in effect may be viewed as factors that mimic characteristics. Using this 

approach, Ferson et al. (1999) find that a nonsense factor such as the alphabet factor they create 

 
1 Recent papers include  Hou, Karolyi and Kho (2011), Daniel and Titman (2012), Chordia, Goyal, and Shanken 
(2015), Luo and Balvers (2017), and Pukthuanthong and Roll (2014). 
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based on company names becomes a significant risk factor.  In addition to showing that it is easy 

to generate a risk factor, they show at the same time that it is difficult to distinguish the effect of 

the characteristics from the effect of a risk factor mimicking this characteristic. 

Balduzzi and Robotti (2008) take the argument a step further. Providing an econometric analysis 

of the difference between using a two-pass approach versus using factor-mimicking portfolios to 

evaluate the performance of non-tradable factors, they additionally point out an observational 

equivalence between characteristics-based and risk-based models, showing that it is always 

possible to create a factor that implies factor loadings which for each asset are equal to the asset 

characteristic. While they do not further pursue the implications, they define the CMPs that we 

will be using here (with minor differences).  The CMPs are also quite similar to the mimicking 

portfolios discussed by Fama (1976) and Ferson et al. (1999) except that the portfolios they 

consider do not imply that factor loadings and characteristics are aligned unless the covariance 

matrix of asset returns is diagonal. 

A recent paper by Kozak, Nagel, and Santosh (2018) provides a quite different argument for why 

it is difficult to distinguish risk factors and characteristics explanations. If some investors are 

rational in the conventional sense and some invest with behavioral motives then the behavioral 

investors focusing on particular asset characteristics may cause price deviations, presenting 

opportunities for rational investors. If the deviations correlate with a systematic risk factor the 

“arbitrage” will not eliminate much; if the deviations are uncorrelated with systematic risk the 

arbitrage should eliminate most of the price deviations.  In either case, however, the pricing in 

equilibrium is consistent with the first-order conditions of both types of investors. Focusing on 

the behavioral investor first-order conditions one would find a characteristics explanation; 

focusing on the rational investor first-order conditions a risk-based explanation works better.  

Yet both views explain the same price observations. 

Our argument goes further in that attempting to distinguish risk-factor and characteristics 

explanations empirically is pointless to begin with for asset pricing purposes, i.e., explaining the 

mean returns of assets. To evaluate if a characteristic or a related risk factor works better, it is not 

reasonable to compare their performances in explaining cross-sectional differences in mean 

returns: either the performances are exactly identical or the characteristic-mimicking factor was 

obtained ad hoc so that any performance difference is arbitrary. Characteristics and factors, 
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nevertheless, may still be usefully differentiated by their explanatory power for return shocks: 

while the risk premia for characteristics are viewed as constant over time, the risk premia for the 

CMP loadings are the factor realizations which must vary stochastically over time. If the CMPs 

explain a significant part of return variation they are valuable for hedging risk and portfolio 

management, and dominate the corresponding characteristics formulation. The same procedure 

for comparing factor and characteristic specifications works just as well if the original 

formulation is in the risk factor form, in which case we would simply use the loadings on this 

risk factor to serve as the characteristics.  

We follow Pukthuanthong and Roll (2014) in considering whether a factor is truly a risk factor 

by evaluating both if the factor has significant pricing power for the assets and whether it 

explains a significant part of return variability. However, presupposing an arbitrage pricing 

context Pukthuanthong and Roll (2014), as do Kozak et al. (2018), argue that, insofar as 

characteristics do not match the loadings on systematic risk factors, priced characteristics 

represent near-arbitrage opportunities (very large Sharpe ratios).  Thus, for them the identifying 

criterion of (priced) characteristics vis-à-vis factor loadings is that they represent potential for 

high Sharpe ratios.  The drawback of using Sharpe ratios in this manner is that we know that the 

maximum Sharpe ratio is that of the (ex post) tangency portfolio and a higher Sharpe ratio means 

mechanically higher correlation with this tangency portfolio. Thus, translating their criterion to 

our terms, the CMP is a “good” factor if it has a high Sharpe ratio. But this does not rule out a 

characteristics interpretation; it merely suggests that a group of investors cares a lot about the 

characteristic for this interpretation to hold.  So, it is not clear, definitely not from a practical 

perspective, what Sharpe ratio should be considered too high to rule out a characteristics 

explanation.  On the other hand, in our approach we simply admit that both interpretations are 

equally sound as far as explaining mean returns is concerned. Subsequently, we check if the 

CMP explains a significant extra quantity of return variability.  If so, interpreting the variable as 

a risk factor is fruitful because it allows for better risk management. 

Concurrent research by Kelly, Pruitt, and Su (2018) provides a general approach that 

distinguishes characteristics from factor loadings. The approach relates alphas as well as betas on 

a predetermined set of latent factors linearly to a group of characteristics.  The coefficients 

relating the characteristics to alphas and latent factor betas are estimated to minimize the sum of 
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squared return errors over all assets and time periods, as in our case. Significant coefficients on 

the alpha part indicate characteristics effects while significant coefficients on the beta parts 

indicate systematic risk effects. The approach allows for time-variation in the characteristics and 

has much to recommend it. However, it differs in important ways from our approach.  First, our 

CMP approach naturally imposes the prior understanding that loadings on factors should be 

closely related to the characteristics that generate apparent anomalies, if there is a risk-based 

explanation. Second, Kelly et al. (2018) view as true risk factors any possible portfolio that 

allows characteristics to combine with it to explain returns. Our CMP approach avoids this bias 

toward the risk-based explanation. Third, our CMP approach obtains simple closed-form 

solutions for the latent risk factors. Fourth, our CMP approach allows us to focus on one 

characteristic at a time. 

In addition to avoiding focus on non-material differences among factor proxies, CMPs are 

particularly well suited for testing an underlying factor’s explanatory power for the time-series of 

asset returns. A property of the CMP as the factor having highest possible exposure to the 

characteristic for given variance implies that it has high power for discerning significant 

explanatory power, and is ideally suited for testing if a variable with significant explanatory 

power for mean returns should be viewed as a risk factor or as a characteristic.  The result not 

only improves the usage of the variable for risk management purposes, but also establishes a way 

for deciding if returns are best viewed as compensation for risk or not, in which case they are 

determined by behavioral aspects or, more generally, by preferences for non-pecuniary attributes 

of an asset. 

In the following, we first discuss further the literature in Section 2 and then discuss the properties 

of CMPs in Section 3. We present in Section 4 a direct comparison of characteristics and risk 

factor formulations and discuss in Section 5 how they may be distinguished theoretically. In 

Section 6 we present simulations that illustrate the power of using CMPs to identify variables 

that are risk factors, in comparison to the power of Factor Mimicking Portfolios (FMPs) of the 

type adopted by Fama and French). Section 7 provides empirical results of distinguishing the 

characteristics and factor formulations for a standard set of characteristics, employing industry 

portfolios and factor portfolios as test assets.  Section 8 concludes. 
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2. Context 

 Fama and French (1992) established empirically that the size (average log of market value) 

characteristic and value (average log of book-to-market ratio) characteristic of stock portfolios 

explained differences in mean returns across portfolios much better than market factor loadings.  

Fama and French (1993) then constructed risk factors based on the size and value characteristics 

and concluded that these mimicking portfolios functioning as risk factors explained average asset 

returns in accordance with equilibrium pricing models.  Their construction of the mimicking 

portfolios lacked a formal motivation but consisted roughly of taking the return of the smallest 

50% of firms minus the return of the biggest 50% of firms in each period as the size-mimicking 

factor return; and taking the return of the 30% highest book-to-market value firms minus the 

return of the 30% lowest book-to-market value firms as the value-mimicking factor return.  

As both size and value characteristics and size and value risk factors separately performed well 

in explaining average return differences, the natural question became which one performed better. 

Daniel and Titman (1997) and Jagannathan and Wang (1996) introduced simple approaches for 

comparing the importance of characteristics and the mimicking risk factors derived from the 

characteristics. Daniel and Titman sorted portfolios separately by factor loadings and by 

characteristics and compared the return differences of the sorted portfolios. Jagannathan and 

Wang added both the factor loadings and the characteristics themselves to a regression 

explaining cross-sectional differences in mean returns. The regression results determined 

whether factor loadings drove out the characteristics or vice versa.  

Extensive and continuing application of both approaches has led to diverging results, with 

sometimes characteristics beating factor loadings (e.g., Brennan, Chordia, and Subrahmanyam 

1998, and Chordia, Goyal, and Shanken 2015), at other times factor loadings beating 

characteristics (e.g., Davis, Fama, and French 2000, and Gao 2011), or the results varying by 

characteristic (Hou et al. 2011). Daniel and Titman (2012) argue that a sharper empirical 

distinction is needed in creating separate portfolios based on characteristics and factor loadings 

to accurately identify which works better. 

Recent literature has attempted to further clarify the distinction between characteristics and 

factors. Lin and Zhang (2011) appeal to the production-based asset pricing context in which firm 

characteristics are related to investment returns and thus naturally represent loadings on 
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investment risk which must relate to return risk. Presupposing an arbitrage pricing context Kozak 

et al. (2018) and Pukthuanthong and Roll (2014) argue that, insofar as characteristics do not 

match the loadings on systematic risk factors, priced characteristics represent near-arbitrage 

opportunities (very large Sharpe ratios).  Thus, the identifying criterion of (priced) characteristics 

vis-à-vis factor loadings is that they represent potential for high Sharpe ratios. Kozak et al. (2018) 

further provide a theoretical model that illustrates that it is not possible to distinguish irrational 

from rational explanations for market outcomes. They argue that investors irrationally focusing 

on asset characteristics may cause price deviations, presenting opportunities for rational investors. 

If the deviations correlate with a systematic risk factor the “arbitrage” will not eliminate much; if 

the deviations are uncorrelated with systematic risk the arbitrage should eliminate most of the 

price deviations.   

Gao (2011) provides an approach for employing characteristics to model asset covariances based 

on the similarity of assets in terms of their characteristics. The covariances now perform better 

than factor loadings in explaining return differences across assets and drive out the 

characteristics. This supports the view that it is risk factors, although not approximated through 

factor loadings, which are more relevant than behavioral factors proxied by characteristics. 

Moskowitz (2003), Connor and Linton (2007) and Suh, Song, and Lee (2014) also provide 

methods for relating factor loadings (or, similarly, covariances) to characteristics that differ from 

the approach of Fama and French (1993). Taylor and Verrecchia (2015) show that given 

delegation of investment both risk factors and individual characteristics will be priced. Chordia, 

Goyal, and Shanken (2015) contribute to the debate on loadings versus characteristics by 

focusing on individual stocks rather than portfolios and adjusting for the substantial 

measurement error bias that results from estimating loadings for individual stocks. They find that 

characteristics perform relatively better than factor loadings in explaining average return 

differences. 

The intent in the recent literature is to sharpen the distinction between characteristics and factor 

loadings, whereas our objective in part is the opposite: to emphasize that the distinction between 

characteristics and factor loadings is immaterial for explanations of mean returns. Characteristics 

are identical to factor loadings but on a factor that is generally only trivially different (in 

construction, not by impact as Kogan and Tian, 2015, argue). The choice of CMP is dictated 
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objectively by a procedure that maximizes exposure of the factor portfolio to the underlying 

characteristic subject to a particular level for the return variance of the mimicking factor. But the 

factor mimicking portfolio based on the Fama and French approach is chosen haphazardly, so the 

difference with the characteristic mimicking portfolio is not fundamental, and basing tests on the 

difference between the two seems beside the point. 

Consider the iconic example of the size characteristic. The Fama-French approach (henceforth 

FF approach) derives from the idea of Fama and French (1993, 1996) to explain the empirical 

importance of the size characteristic for average returns from a risk-taking perspective: for 

whatever reason, smaller-size firms are more exposed to systematic risk. Accordingly, Fama and 

French construct a risk factor as the return of a factor-mimicking portfolio formed, roughly, by 

holding the 50% smallest firms and shorting the 50% largest firms. Empirically, the resulting 

“size factor” helps to explains differences in mean returns well.  

However, why construct the risk factor in this manner? A theoretical motivation for the 

construction would protect against data mining through specification search. If the idea is that 

smaller firms are more sensitive to risk, why not construct a risk factor such that the sensitivity to 

this factor is indeed directly related to firm size? The latter defines the approach advocated in the 

present paper (henceforth the CMP approach): construct a risk factor such that the covariance (or 

the factor loading) of each asset’s return with this factor is identical to the characteristic of each 

asset. This Characteristic-Mimicking Portfolio (CMP) also provides the theoretical justification 

that it is the minimum variance portfolio with the largest exposure to the characteristic (firm size 

in this example) and it provides the maximum degree of information about the latent risk factor.  

It is not our intent to provide a factor that is simply a variant of the size factor generated by Fama 

and French. Our key point is that comparing factor loadings and characteristics is mostly 

meaningless. Trivially the tests initially proposed by Daniel and Titman and Jagannathan and 

Wang (see also Jagannathan, Skoulakis, and Wang, 2010) cannot be performed when CMPs are 

the mimicking portfolios. While other mimicking portfolios, typically generated from ad hoc 

assumptions, may produce differences between factor loadings and characteristics, these 

differences are nonessential from a theoretical perspective, even though Kogan and Tian (2015) 

argue they may nevertheless be essential empirically.  
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Mimicking portfolios were first advocated to represent macro risk factors by Breeden (1979), 

Grinblatt and Titman (1987), and Huberman, Kandel, and Stambaugh (1987) and applied to 

represent consumption risk by Breeden, Gibbons, and Litzenberger (1989). These mimicking 

portfolios convert systematic risk tied to realizations of macro-economic variables into tradable 

asset portfolios with returns that explain average asset returns just as well as the original macro 

factors. Lamont (2001) devised an alternative construction of mimicking portfolios, “tracking 

portfolios”, to represent expectations of macro variables. As a key application, Kapadia (2011) 

used this approach to capture distress risk. Ferson, Spiegel, and Xu (2006) consider the optimal 

use of mimicking portfolios representing macro risk factors in the context of predictable time 

variation.  

Much earlier, Fama (1976, pp. 326-329) pointed out (see also Ferson et al., 1999) that estimates 

of risk premia based on Fama-MacBeth (1973) regressions, potentially using characteristics, may 

be interpreted as portfolios of the assets, with the portfolio weights depending on the 

characteristics. Here the mimicking portfolios are used to represent individual asset 

characteristics. The CMP version arising in Balduzzi and Robotti (2008), although not 

previously applied for this purpose, precisely mimics characteristics in the sense that assets’ 

loadings on such a mimicking portfolio directly reproduce the assets’ characteristics. The 

approach of Fama and French (1993) provides an alternative, although without formal validation, 

also generating mimicking portfolios interpreted as risk factors that represent characteristics. 

Back, Kapadia and Ostdiek (2013) empirically consider the performance of both the Fama (1976) 

and the Fama and French (1993) approaches, terming aptly the Fama (1976) mimicking 

portfolios “characteristic pure plays.”  Kirby (2018) adapts the Fama (1976) approach to enable 

sorting based on unexplained characteristics components and constructing mimicking portfolios 

more efficiently. 2 

 
2 Not only does the CMP approach mimic an aggregate risk associated with a desired characteristic, it also 
provides a practical vehicle for estimating firm-level characteristics based on measuring factor loadings 
on the mimicking portfolio, as we explore separately in a follow-up paper: By constructing a mimicking 
portfolio for a specific characteristic it becomes possible to estimate a future value of a firm’s 
characteristic (before it is observed) from observation of the firm’s factor loading on the CMP, which is 
typically observed at a higher frequency than the characteristic itself. As such, using mimicking portfolios 
is akin to Lamont (2001) in the limited sense that it can be used to provide estimates of unobservable 
variables. But rather than generating estimates of expectations of macro variables, we use the CMP to 
provide estimates of firm-level characteristics that cannot be observed in real time. 
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3. Characteristic-Mimicking Factors 

 It is always possible to create a “characteristic-mimicking portfolio”  (CMP) to function as 

an additional factor that prices all assets in the same way as the original characteristics, and 

converts the premium associated with a deterministic set of asset characteristics to a premium for 

systematic risk associated with a risk factor that changes stochastically over time. 

Following Balvers and Luo (2016), define a characteristic-mimicking factor as a portfolio of the 

risky assets that: (1) maximizes the exposure to the characteristic, subject to (2) a particular 

portfolio variance.  The covariance matrix of the returns of N risky assets is given by a positive 

definite Σ. A particular characteristic for all assets is represented by the vector z; zs is the vector 

of portfolio shares of the characteristic-mimicking portfolio; and 2σ is the pre-determined 

portfolio variance. 

  )Max zs(
s

z

z

′ ,  s. t.   2σ=′ zz sΣs  ,          (1) 

Given the Lagrangian formulation with multiplier λ½ , the first-order conditions become 

  zΣsz
1)/1( −= λ ,               (2) 

which provides the portfolio shares of the zero-investment characteristic-mimicking factor with 

return zΣrz
1)/1( −′= λr .  Note that the scale as affected by λ  is unimportant for the factor 

choice since we have  a zero-investment portfolio and, even if we did not have a zero-investment 

portfolio, would have no impact on the explanatory power of the factor. 

For empirical purposes we choose 2σ for each characteristic so that 1=λ  for each mimicking 

factor.  In this case it follows that zΣrz
1−′=r  and zΣμz

1−′=µ , where r and μ are N x 1 

vectors of returns and mean returns, respectively, so that: 

  zzΣμrμrμr zz =−−=−−= −1])')([()])([(),( ErErrCov z µ       (3) 

Thus, for any set of characteristics it is possible to create a CMP factor for which the covariance 

with any of the assets generates the asset’s characteristic. In the next section we show that for 

pricing purposes one may replace a particular risk factor by a set of deterministic characteristics, 
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or vice versa replace a set of deterministic characteristics by an equivalent systematic risk factor, 

without changing the pricing results. 

Maximizing the signal about the underlying factor 

A further property of CMPs stems from the fact that the characteristic, when viewed as an 

unbiased indicator of a loading on an underlying factor, captures the underlying factor optimally.  

View the N x 1 vector of returns tr  at each time t as determined by a set of factors we do not 

need to specify where O
tr  is the N x 1 vector capturing each asset’s sum of factor risk premia 

plus idiosyncratic risk; and focus on one additional latent factor F with return F
tr  and factor 

loadings b that, without loss of generality, may be considered to have zero mean and be 

uncorrelated with the other factors (otherwise we may just focus on the uncorrelated component 

as the latent factor).   

 O F
t t tr=r r + b .               (4) 

The loadings are assumed to be imperfectly correlated with the N x 1 vector of characteristics z : 

 b = z + ω  ,                (6) 

where ω  is an N x 1 vector of mean-zero random components. The covariance matrix of the 

returns is then given by 

 2 2 2( )O
F F Fσ σ µ′+ +Σ = Σ + z z Ω ,           (5) 

with Σ  the full covariance matrix of the returns; OΣ the covariance matrix for the unspecified 

factors plus idiosyncratic risk; Ω the covariance matrix of the ω ; and Fµ and 2
Fσ the mean and 

the variance of the unobserved factor return.  

Then we wish to design a mimicking factor MIM
t tr ′= s r  for F that captures its fluctuations well.  

 ( )MIM O F F
t t t t tr r r′ ′ ′= = +s r s r ω +s z .           (7) 
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The first term on the right-hand side is the noise in the mimicking return that is unrelated to 

characteristics z and the second term is the signal. The criterion is that the mimicking factor 

maximizes the variation due to signal about the true factor relative to the total variation. Taking 

the variance in equation (7): 

 2 2( )Fσ′ ′s Σs = H + s z .              (8) 

Here 2 2( )F Fσ µ′ ′≡ + +OH s Σ s s Ωs  and does not depend on z. The relative signal content in the 

mimicking factor is given by signal variance to total variance ratio: 

 Signal ratio = 2 2( ) /Fσ ′ ′s z s Σs  .            (9) 

The ratio involves the cross-moment between factor shares and characteristics relative to the 

variance of the factor return. The discussion earlier in this section shows how to maximize this 

ratio: for any given variance ′s Σs  the ratio is maximized by maximizing ′s z .  As shown in 

equation (2) the maximum of the ratio in equation (9) occurs for  

 1(1/ )λ −=s Σ z .               (10) 

Using the portfolios shares from equation (10) the maximum signal ratio becomes 2 ( )Fσ ′ -1z Σ z . 

Higher factor return variance as well as larger characteristics exposures for each asset relative to 

what this asset contributes to variance of all returns enhance the ability to identify the factor. 

Thus, the CMP has one further interpretation. Apart from generating covariances with the assets 

equal to the asset characteristics and maximizing exposure to the characteristic for given 

variance, it also maximizes the informative content about the underlying factor. The latter 

property is important since it implies that a mimicking factor of this type is particularly 

informative in explaining time series fluctuations in returns.  E.g. in the time-series regressions 

  MIM
t t tr= +r α +β ε ,       `       (11) 

The factor MIM
t tr ′= s r  is highly informative about the underlying factor, even though its variance 

may be relatively low, and is expected to provide the clearest explanatory power of any 

mimicking portfolio. We will provide simulation results supporting that this is indeed the case. 
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4. Empirical Specification 

 We present next a general empirical formulation.  To distinguish characteristics and risk 

factor loadings explanations we present two simple models (similar to the models in Balduzzi 

and Robotti, 2008). In the first a set of characteristics (in addition to regular systematic risk 

factors) linearly affects returns for all assets and time periods. In the second the characteristics 

are replaced with risk factors which also (partially) explain returns for all assets but with 

stochastic risk premia in all periods, as is necessary for a risk factor. We then generate the CMPs. 

Once we obtain the CMPs we discuss how they can be used to suitably distinguish characteristics 

and risk factor specifications. 

We focus here on the development and application of CMPs which we may define outside of the 

context of a particular model and for cases in which asset prices are explained only partially. 

Consider a given set of N firms issuing financial assets. The firms are characterized by K 

different characteristics captured by the N x K matrix Z , which we assume to be constant over 

time. Under the characteristics view, for each time period we have: 

  tt eZcr += ,                (12) 

where tr is a N x 1 vector of excess returns with N x 1 vector of time series means μ  of the asset 

excess returns and Σ the covariance matrix of the asset excess returns, that may already have 

been adjusted for known factor risk. c is K x 1, and te  is the N x 1 vector of errors. Note that Z  

may include N1 , a N x 1 vector of ones, to capture a constant in the characteristics estimation 

(we would then define ( )X1Z N= , so that X represents a N x (K-1) matrix of non-constant 

characteristics, and ( )a ′=c b ). Pool over all time periods to estimate c.  If we estimate c 

efficiently from eq. (12) by Generalized Least Squares (GLS) then we obtain 

  μΣZZ)ΣZ(c 111 −−− ′′= ,             (13) 

Alternatively, we have the risk factor specification with tradable assets serving as risk factors 

  t
Z
tt uBrαr ++= ,               (14) 
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Where tr  is as above, α is N x 1. tu is i.i.d. N x 1 with means equal to zero. t
Z
t rSr '=  which is K 

x 1 and S  is an N x K matrix of portfolio shares. Suppose the K risk factors are chosen according 

to equation (10), with 1=λ  and aggregating all characteristics, to be the following portfolios of 

the N assets: 

  ZΣS 1−= ,                (15) 

where ])'μ)(rμE[(rΣ tttt −−=  is the covariance matrix of the N asset returns. Thus, 

ZZΣμμ)(rrr,r tt
Z
tt =−−= −1])'[()( ECov .  

Given eq. (14) we find the “betas” from the standard first-pass time series regressions: 

  1ΣS)SΣS(B −′= .               (16) 

From eqs. (15) and (16) we may infer that 11Z)ΣZZ(B −−′= .  Taking expectations in both 

models (12) and (14) implies that )( tE eα = , where the expectation represents the time series 

average. Both models provide the same estimates for mean returns. It follows that we can 

generate a CMP for every set of assets and every characteristic.  

If Z  includes a unit vector to add a constant in the specification, so that ( )X1Z N= , then the 

set of mimicking portfolios must be supplemented with a constant-mimicking portfolio which 

has investment weights N
1

C 1ΣS −=  and with which every asset has identical unit covariance. 

This portfolio is up to scaling equal to the global minimum variance portfolio and has zero 

explanatory power for differences in mean return across the assets. The lack of cross-sectional 

explanatory power is intuitively clear because all assets load equally on this factor. 

If Z  consists of a vector μ  of the mean returns of the test assets then the mimicking portfolio is 

(again up to a scaling factor) equal to the tangency portfolio:  μΣS 1
T

−= .  By design, therefore, 

the “mean return” characteristics as well as the associated CMP perfectly explain the mean 

returns of all test assets. Arbitrage Pricing Theory implies that a factor explaining all of the mean 

returns should also explain all of the undiversifiable risk.  Accordingly, the CMP for mean 

returns (equal to the tangency portfolio) also should explain more of the time series variation 
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than any other factor. Note that this implication must hold for arbitrage pricing theories but not 

necessarily for equilibrium asset pricing theories. 

The two models discussed assume that characteristics and factor loadings are constant over time.  

This captures the idea that, by nature, factor loadings and characteristics change very slowly 

compared to factor realizations which have essentially no persistence. It is possible to allow 

characteristics (or loadings) to change dramatically every period so that the characteristics model 

could explain time-series fluctuations as well.  However, such a formulation is counter to the 

intuitive notion of a characteristic as being a relatively stable attribute of an asset. On the other 

hand, allowing characteristics to evolve slowly over time can easily be accommodated in our 

approach. It would involve using actual characteristics at each time instead of averages over time 

and estimating betas as rolling averages (using the standard 60 periods, for instance) rather than 

using all previous data points. As we believe the empirical impact of this generalization to be 

minor we have not incorporated the time variation in characteristics and loadings in our approach 

and in the simulations and estimation to be discussed. 

5. Distinguishing Factors and Characteristics 

 With properly chosen CMP there is no difference between characteristics and covariance 

with the factor, in terms of pricing (i.e. explaining average returns).  However, the characteristics 

have a constant impact on returns whereas the risk factor realizations are stochastic in each time 

period. As a result, the factors may explain variation in realized returns better.  Comparing the 

unexpected returns for both models: 

  )( tt E eeμrt −=− .              (12’) 

  t
ZZ

tt uμrBμr +−=− )( ,             (14’) 

where μSμZ '= . The right-hand sides are equal in both specifications, and both represent 

unpredictable components, but the error in eq. (14’) includes the factor risk component which 

may be hedged to eliminate part of the risk. So, for the factor model to be better it must be that 

the variance of error tu  in eq. (14’) is significantly less than the variance of error )( tt E ee −  in 

eq. (12’).  In that case, a hedging strategy of holding asset i and shorting 11 )ZΣZ(Z −−′i  units of 
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each factor should significantly reduce risk ( iZ  is the row vector of asset i’s K characteristics), 

which could be true only by coincidence under the characteristics interpretation. 

We use as the performance criterion the equal-weighted average of the error variance pooled 

over all time periods and assets. The reduction in error variance (equal-weighted) due to Z alone 

then equals  }'[{ ]B)'μ)(rμB(r ZZ
t

ZZ
t −−ETr , where Tr represents the trace of the matrix. Given 

μSμZ '=  and ZΣS 1−= , then, using eq. (16), 

  ]ZZ)Σ[Z(Z')(uu'eeee)(uu'(Σ 11 ']))'())(([() −−=−−−=− TrTrEETrTrTr tttt ,    (17) 

where u is a T x N vector of all asset errors for all time periods.  

It is straightforward to show (see Appendix) given the interpretation of )(uu'Tr as the equal-

weighted average of the error variance pooled over all time periods and assets, that the R-squared 

of a pooling regression of equation (14) over all periods and assets is identical to the weighted 

average R-squared of the separate time-series regressions of all assets ( ∑
=

=
N

i
iiAVG RwR

1

22 ,with 

∑
=

=
N

i
iiiw

1

22 / σσ , where 2
iR  is the time-series R-squared and 2

iσ  the return variance of asset i), 

which may be computed directly as: 

  )/'2 (Σ]ZZ)Σ[Z(Z' 11 TrTrRAVG
−−=            (18) 

If we substitute ZΣS 1−=  from equation (15) or 111 Z)ΣZ(Z'ΣS −−−=  we obtain alternatively: 

  )/]'[2 (ΣΣSS)ΣS(S'Σ 1 TrTrRAVG
−= .          (19) 

Either expression may be employed to evaluate the explanatory power for time-series variation 

of a set of factors or the CMPs associated with a set of characteristics. 3 

 
 
3 The scaling of the characteristics (by a possibly different proportion for each characteristic), so that we 
obtain ZZD , where ZD  is an invertible K x K diagonal scaling matrix, or scaling of the portfolio weights 
of the factors, so that we obtain SSD , where SD  is an invertible K x K diagonal scaling matrix, has no 
impact on the R-square measure in equations (18) or (19), as is easy to derive using these equations. 
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Empirical Testing Procedure 

It may be that the CMP due to random variation explains more or less of return variance.  To 

adjust for this we provide a formal statistical test. The right-hand side of eq. (17) is in the form of 

a generalized Rayleigh Quotient (see for instance Li, 2015) and must be positive and no larger 

than the sum of the K largest eigenvalues of Σ  (as well as no smaller than the sum of the K 

smallest eigenvalues of Σ ).  Thus, we propose a test to distinguish characteristic and loading 

formulations entirely based on the error variance: compare the trace in eq. (17) for actual data to 

a critical value. By this method we adjust for the fact that any tradable factor will naturally 

explain its own variance, and also take into account the specifics of the cross-sectional 

distribution of each characteristic that may otherwise affect the outcome.  

Permuting Characteristics  

From eq. (17) or (18) we focus on ]ZZ)Σ[Z(Z' 11 '−−Tr  as our measure of additional variation 

explained by the risk factor as opposed to the characteristic.  To provide a distribution under the 

null hypothesis that the CMP explains no additional variation in returns, we propose to use the 

original distribution of cross-sectional characteristics Z  but permuted cross-sectionally for some 

of the characteristics:  ]PZ[ZZ 21P = , where we consider the significance of the CMPs from the 

set of characteristics 2Z (which could include anywhere between all of Z  or as little as one 

column).  Keeping the characteristics in 1Z constant, we randomly change the order of the 

characteristics as they are assigned to the different assets by multiplying 2Z  by the (orthogonal) 

permutation matrix P  which randomly permutes the order of the rows of 2Z .  The resulting 

CMPs are given as  

   
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r]'PZΣZ[Σr)'Z(ΣrSr .     (20) 

Clearly, the permutation results in changing only the CMPs related to the second group of 

characteristics which are to be assessed.  Apart from aspects of the original distribution of 

characteristics which remain unchanged, the CMPs based on the permuted characteristics should 

have no inherent explanatory power for return variations and accordingly are an appropriate 

benchmark for the null hypothesis that the original CMPs based on 2Z  explain no additional 

variation in returns. 
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Accordingly: when treating risk factors derived as CMPs from characteristics we permute the 

appropriate part of the Z  matrix to establish a benchmark to evaluate the null hypothesis that a 

particular set of factors explain no additional time-series variation. We can then 

straightforwardly calculate the distribution of the average time-series R-squared based on the 

permuted cases by computing )(/' Σ]ZZ)Σ[Z(Z' 11 TrTr −− for each permutation. 

6. A Powerful Test for Distinguishing Risk Factor and Characteristics Explanations 

 The construction of the CMP makes it particularly useful for deciding if a variable converted 

to a factor has significant explanatory power for time-series differences in returns. The criterion 

is the variance-weighted average across all test assets of the time-series R-squared as given in 

equation (18).  It is not the absolute level of this R-squared that matters since certain factor 

formulations automatically generate higher R-squared that may have spurious explanatory power. 

What matters is the level of the R-squared relative to the R-squared for similar alternative cases 

based on random draws.  By construction, the CMP is informative about the alternative 

hypothesis of a true underlying factor because it maximizes the exposure to the characteristic that 

represents factor exposure and has the maximum signal about the underlying factor.  On the 

other hand, by construction in the “dual” form (the dual of the formulation in equations 1), the 

CMP may be viewed instead as minimizing its factor variance subject to a given level of 

exposure to the characteristic.  Lower factor variance generally reduces time-series explanatory 

power. Accordingly, a proper test should compare against similar type factors. 

Simulation Design 

Bootstrapping simulations are constructed as follows. We utilize the actual excess returns of our 

main test assets, the Fama-French 30 monthly industry portfolios for the period 1963.07 to 

2017.12.  We create an artificial factor by adding to the existing returns the product of a random 

(but constant over time) factor loading for each asset and a random factor realization for each  

period.  The random factor is drawn from an i.i.d. normal distribution calibrated so that the mean 

annual factor return is 5 percent and the annual Sharpe Ratio is 0.35.  The factor loadings are 

based on uniform random draws of a set of characteristics (one for each test asset) plus normally 

distributed random noise with zero mean, under different parameters and specification so that we 

evaluate the power of the test for various correlations between factor loadings and characteristics. 
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The idea is to capture the important practical consideration that (under the alternative hypothesis) 

characteristics are viewed as proxies for asset loadings on some unobserved risk factor.  Thus, 

  ,F SIM
tr

SIM
t tr = r + b ,              (21) 

  , ,F SIM F SIM
t tr µ σ ε= +  ,  , ~ (0,1)F SIM

t Nε .         (22) 

  [ ( ) ]i i i ib a c Zγ ω= +  ,  ~ (0,1)t Nω ,  ~ 2 (0,1)i Uγ  or 1iγ = ,  ~ 12 (0,1)iZ U . (23) 

Here b is the vector of ib  for i from 1 to N.  The SIM
tr are the simulated returns for each period t 

based on the true returns tr  and adding to it a random factor realization ,F SIM
tr  drawn from a 

normal distribution with mean µ and standard deviation σ (such that the mean annual factor 

return is 5 percent and the annual Sharpe Ratio is 0.35), multiplied by factor loadings ib  for each 

asset drawn from the product of two independent uniformly distributed variables ,i iZγ  on the 

multiples of the interval (0,1). The multiples are set so that (1) ( ) 1iE γ =  and (2) var( ) 1iZ =  The 

product i ic Zγ  is added to a standard normally distributed variable iω  . The parameter c varies 

across the simulations and may be viewed as a signal-to-noise parameter that controls the 

correlation between the characteristics iZ  and the loadings ib . Parameter a is chosen so that the 

true (in simulation) time-series R-squared is equal to a particular fraction (typically 2%, which is 

roughly equal to the variance explained by the fifth or sixth eigenvector of the 30 monthly 

industry portfolios for the period 1963.07 to 2017.12, see Table 1). 

Based on equations (21)-(23) drawn for t = 1 to T where T = 654, the number of months in our 

sample, we have one simulated data set for which we know the exact impact of a factor that is 

moderately important. We draw K = 1000 versions of this data set. For each version of the data 

set, we construct a factor from knowledge of the characteristics iZ  using either the Fama-French 

Factor Mimicking Portfolio (FMP) approach or our CMP approach. Then calculate the average 

time-series R-squared based on either equation (18) for the CMP approach or equation (19) for 

the FMP approach. Or, equivalently, running time-series regressions of the returns of each of the 

N = 30 test assets in turn on the constructed CMP factor or FMP factor and averaging (using 

variance weights) across all 30 assets. 
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For each data set, we then compare the obtained R-squared (separately for the CMP and FMP 

cases) against a benchmark distribution based on randomly chosen characteristics.  Instead of the 

set { iZ } that directly affects the factor loadings ib  and thus explains the simulated returns SIM
tr  

we permute this set to generate {Pj iZ }  so that the characteristics maintain their distribution but 

are no longer associated with the realized returns.  We do this for j = 1 to J  where J = 1000, and 

calculate the time series R-squared in each case, to generate a distribution under the null 

hypothesis that the characteristics and associated factors (CMP or FMP) have no explanatory 

power in the time series. If the R-squared for the original, true, set of factors obtained from { iZ } 

is larger than 95% of the R-squareds for the permuted characteristics {Pj iZ } then we reject the 

null hypothesis for this data set and conclude that the CMP or FMP has real time-series 

explanatory power and should be interpreted as a risk factor. 

We do this for all K different simulated data sets and find the fraction of times that the test 

rejects the null hypothesis.  Since in that fraction of the cases we reject the null hypothesis when 

it is indeed false, we call this fraction the power of the test. 

For each draw of a factor and associated characteristics and factor loadings and using either the 

FMP approach or the CMP approach to generate observable factors from observed characteristics,   

we construct a bootstrapped distribution by randomly permuting across the N=30 assets J=1000 

times the characteristics (the assignment of the characteristics to each asset are scrambled) and 

then calculate the R-squared in each case. For each of the K=1000 factor draws we decide if the 

R-squared is larger than 95% (or 90% or 99%) of the R-squareds of the 1000 permutations.  If so, 

we reject the null hypothesis of no-explanatory-power for the time-series.  The fraction of these 

rejections provides the empirical power of the test because the rejections are correct since the 

generated factors have inherent explanatory power.  We can use the same setup but create returns 

for which factor loadings do not depend on characteristics.  In that case, the fraction of rejections 

provides the empirical size of the test.  

Simulation Results 

The size of the tests for both the CMP and the FMP approaches given the 95% level of 

significance is in all cases very close to 5%.  This is not surprising given that we simply 

construct characteristics that are random and statistically unrelated to realized returns. Then 
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when we permute the characteristics across the different assets these characteristics are also 

statistically unrelated to realized returns so that the R-squareds associated with the un-permuted 

characteristics stochastically exceed the 95% critical values around 5% of the time, irrespective 

of whether we use the FMP approach or the CMP approach to generate factors from the 

characteristics.  The results are not tabulated but available from the authors. 

We focus here on the power of the test under the two different approaches.  Table 2 provides the 

results for a benchmark case in which we consider the normalized returns on 30 portfolios over 

654 periods such that the covariance matrix before adding impact of the simulated factor is the 

identity matrix. In this case, a true factor would be relatively easy to identify and we expect high 

power for both approaches.  We also ignore the multiplicative randomness in the factor loadings 

( 1=iγ  for all i), further simplifying identification of a true factor. The signal-to-noise coefficient 

varies from 0 to 2.  As Table 2 indicates, the power is around 5% for both approaches when the 

signal-to-noise coefficient c equals zero.  This effectively provides the size since, although a 

relevant risk factor exists, its factor loadings are by design unrelated to the stipulated observable 

characteristic. As the signal-to-noise ratio increases, the factor loadings become increasingly 

tightly related to the characteristics, and the power of the test for both the CMP and the FMP 

approaches increases from 5% to 100% as the signal-to-noise parameter increases from zero to 

one. Table 2 also shows that the correlation between the factor loadings and the observable 

characteristics increases from zero to close to 90%.  

The “true” R-squared for the simulated factor of 2% based on appropriately choosing parameter 

a in equation (23), listed in the table as “actual” R-squared, is for the simulated data indeed very 

close to 2% for all values of c but could be calculated only if one knew the latent factor 

realizations.  The observed R-squareds for the mimicking factors generated by either the CMP or 

the FMP approaches may be higher or lower than the “true” R-squared.  Higher is possible 

because the mimicking factors are tradable and thus explain a linear combination of the asset 

returns perfectly by design.  Table 2 shows that the CMP and FMP average R-squareds given the 

permuted (“useless”) characteristics are around 3 to 4% (increasing slightly for the CMP and 

decreasing slightly for the FMP as c increases).  However, the R-squareds clearly increase as c 

increases for the un-permuted (“useful”) characteristics, doubling approximately for the CMP 

and increasing by about 50% for the FMP.  The change in the R-squareds for the useless 
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characteristics cases is related to the fact that the factor impacts and return variances change as 

the signal-to-noise parameter c changes and parameter a changes in response to keep the “true” 

R-squared constant.  

Table 3 provides the relevant results as it assumes the covariance matrix before adding impact of 

the simulated factor is the actual covariance matrix for the 30 industry portfolios for monthly 

excess returns over the period from 1963.07 - 2017.12.  The results are striking in comparison to 

the benchmark in Table 2. The power for the CMP approach is still high, rising from close to 5% 

at c=0 to 100% at c=2.  For c=1 the power is 65% and the correlation between factor loadings 

and characteristics is 70%.  The R-squared for useless characteristics is 1.4% and for useful 

characteristics 2.5%.  On the other hand, the R-squareds for the FMP case for both useless and 

useful characteristics are substantially higher at around 7% (and, in fact, higher for the useless 

characteristics case).  However, the power in the FMP case is extremely low here, actually 

decreasing from 5% for c=0 to 3% for c=2.  Thus, in practice we consider the FMP approach 

inadequate for deciding if a variable may be viewed as a factor or as a characteristic. 

There are several observations about the number in Table 3 that are interesting.  First, the FMP 

approach produces factors with naturally higher time-series R-squareds compared to the CMP 

approach.  The reason follows from the optimization in section 4, namely that the CMP factors 

are chosen to minimize factor variance subject to a given level of exposure to the characteristic. 

By design, such a factor explains less of portfolio return variance.  However, it also by design 

has a higher signal-to-noise content (high exposure to the characteristic relative to its return 

variance) which causes it to outperform random alternatives.  An additional observation is that 

the performance of the FMP approach decreased dramatically in moving from uncorrelated 

returns with similar variances to a realistic covariance case. The reason is that the return 

covariances make it more difficult to pick up the signal about the latent factor from the 

characteristics.  Note that the FMP R-squared increases with c for the useful characteristics case, 

but very slowly. On the other hand, the CMP approach utilizes the inverse covariance matrix in 

designing the factor from characteristics which helps to offset the return covariances and isolate 

the true signal about returns from the characteristics. 

Table 4 explores the impact of the importance of the factor in explaining time-series fluctuations. 

In the previous tables we set the explained  R-squared (if the true factor were known) equal to 
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2%. Here we examine the impact of different values for the explained R-squared. We evaluate 

these setting c=1 and maintaining the realistic covariance matrix.  We consider the R-squared for 

the introduced factor for the cases of 0.5% , 1%, 2%, 4%, 8%, 16%, and 32%.  Table 4 shows 

that for all cases the correlation between characteristics and factor loadings is 70% (since c is 

constant). The power for CMP increases monotonically with the explained R-squared from 

around 10% to 81%, and the power for FMP increases from around 5% to 70%.  The power for 

CMP is higher than that for FMP for each realized R-squared but the difference diminishes as the 

R-squared rises and for R-squared = 32% is relatively small at 81% vs. 70%.  In addition, at this 

high R-squared the average FMP R-squared (for useful characteristics) is now 29% while that for 

CMP is only around 4%.  Thus, for high (maybe unrealistically high) explanatory factor of a 

latent factor, the FMP approach becomes competitive with the CMP factor. 

Table 5 maintains similar parameters as Table 3 but also allows random variation in the 

component multiplying the characteristics in addition to the additive random component added to 

characteristics in determining the loadings. The objective is to see if our results above are 

sensitive to the specific formulation of the relationship between loadings and characteristics (for 

given correlation, say).  The power for CMP is now increased even though the correlation 

between characteristics and loadings is similar as in Table 3. For c=0.5 the power is 26%; for 

c=1 the power is 71%; for c=1.5 the power is 92%; and for c=2.0 the power is 97%.  In all cases, 

again the power for FMP hovers around the 5% level. 

Table 6 maintains the parameters as in Table 3 but now adds the market CMP as a guaranteed 

factor. Including the market is quantitatively important since the market factor, being often quite 

similar to the first eigenvector of the test assets, generally has substantial explanatory power for 

the time-series of the test assets, and many candidate factors are strongly correlated with it. 

As Table 6 shows, including the market factor increases the power for the CMP approach which 

is now 61% for c=1 and 88% for c=2. While the average FMP R-squared for all c values is now 

much higher due to inclusion of the market (from 63% to 64%) and is again above the average 

CMP R-squared (which now varies from 60% to 61%), the power for the FMP approach is again 

negligible, everywhere around 5%. 
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In summary, in some circumstances both the CMP and FMP approaches have high power to 

discern a true factor and distinguish a risk factor from a characteristic effect, but the FMP 

approach is only competitive with the CMP approach for cases that may not be practically 

relevant – when returns are mostly uncorrelated or when the latent factor explains a very large 

fraction of time-series variation.  On the other hand, the CMP approach always has substantial 

power as long as the correlation between the observed characteristics and the factor loadings on 

the unobserved factor are reasonably high. It should be emphasized that the consistently higher 

R-squared for the FMP approach is an indicator of spurious explanatory power and emphasizes 

the importance of comparing the R-squared against a background distribution. 

7. Empirically Differentiating Risk Factor and Characteristics Explanations 

 We target our methodology to standard cases in which conflicting characteristics and risk 

factor explanations have been proposed. The most straightforward application is to consider the 

factors and characteristics associated with the Fama and French (2015) five-factor model. These 

concern size, value, profitability, and asset growth characteristics, in addition to market 

covariances. As our test assets we will be concerned with the 30 equal-weighted industry 

portfolios constructed by Fama and French augmented with the five factor portfolios from Fama 

and French (2015). The industry portfolios are interesting because they are diversified but have 

not first been sorted based on specific characteristics with controversial pricing impact. We add 

the five factor portfolios in part because this is recommended by Lewellen, Nagel, and Shanken 

(2010) to increase the challenge but also because it allows a direct comparison between our 

approach and that of Fama and French while keeping all factors tradable assets.  The factors we 

consider are derived from characteristics in three ways: (a) using the CMP approach, (b) using 

our construction of Fama-French factor-mimicking portfolios (FMPs), and (c) using the actual 

Fama-French factors (the FF approach). 

 

Explanatory Power for Mean Return Differences 

We compare the performance of factor and characteristics formulations for the 35 industry-plus-

factor portfolios. We consider the actual Fama-French (2015) market, size, value, profitability, 

and investment factors, and the CMPs and FMPs for each of the associated characteristics. The 

Fama-French factors representing the systematic risk related to a characteristic in practice have 

been formed quite differently from the way we construct the CMP.  For instance, Fama and 
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French (2015) find the value risk factor by first collapsing the value characteristic, BM (the log 

of book to market equity), into +1 for the 30% highest BM firms and -1 for the 30% lowest BM 

firms (but adjusting for size), and call the returns of this factor at each time the HML factor (the 

value factor from the FF approach). There is no clear objective basis for this particular choice. 

We contend that the distinction created between factor and characteristic in this fashion is not a 

robust and fundamental one but rather arising from differences in the technical details of the 

mimicking factor construction.   

In contrast, as the alternative value factor, the value-CMP factor (the value factor from the CMP 

approach) for which the loading of each asset equals the asset’s covariance with the factor, we 

use our approach to calculate BMr − −=value CMP 1
t tr 'Σ  (where BM represents the vector of value-

measures for each test asset). While there is little theoretical reason to expect either the HML 

factor or the value-CMP factor to outperform the other, it is useful to consider both specifications 

since Kogan and Tian (2015) argue that the empirical performance of factor and characteristics 

formulations in explaining mean returns is quite different.  In addition, we consider the value-

FMP in which we apply the Fama-French approach based on the 30 industry portfolios. The 

FMP returns are given by r value-FMP
t t= r 's(z) , where s(z)  equals +1 for the industry portfolios with 

the 30% highest z (here BM values), -1 for the industry portfolios with the 30% lowest z, and 0 

for all other portfolios.  The other characteristics are treated similarly. 

The cross-sectional results for the CMP approach are in Panel A, those for the FMP approach are 

in Panel B, and those for the FF approach are in Panel C of Table 7. We stress, however, that 

whether the CMP approach, the FMP approach, or the FF approach performs better is irrelevant 

for the determination of whether to adopt a characteristics or a risk-factor explanation – it will 

just favor one particular proxy for measuring the value impact (or the size, profitability or 

investment impact) over another).  While under the FF and FMP approaches of constructing 

factors the characteristics and the covariance between the characteristic-based factor and returns 

are not the same, showing that both characteristics and the characteristic-based factor matter 

jointly is not evidence of a characteristics effect; it is just an indication that reasonable proxies of 

the same attribute are sufficiently dissimilar and each contain different noisy information 

regarding the same underlying variable. 
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Table 7 shows for the 35 portfolios for the period July 1963 – December 2017 the standard test 

for the explanatory power of characteristics in addition to the loadings of the factor. We employ 

the Fama-MacBeth (1973) cross-sectional two-pass approach with the proviso that, as in Black-

Jensen-Scholes (1972) the factor loadings are estimated once for the full period. We also 

consider the first-pass results to examine the economic and statistical significance of the alphas.  

As is consistent with previous studies (e.g., Lewellen et al. 2010), the various standard models 

consisting of combinations of the market, value, size, profitability, and investment factors have 

reasonable overall explanatory power for the mean returns of the industry portfolios plus the five 

factors:  the cross-sectional R-squareds vary from 45% for the CAPM to between 56% and 69% 

for the three and five factor models. However, the prices of risk are generally not significant and 

differ in sign and magnitude from what is expected.  The GRS test (Gibbons, Ross, and Shanken, 

1989) convincingly rejects the null hypothesis that the alphas (or mean pricing errors) are zero. 

And the absolute values of the alphas are sizeable, larger than 2% annualized.   

On the whole, therefore, for these 35 test portfolios the explanatory power for mean returns of 

both the three and five factor models is quite weak. However, note our key point that this 

performance in terms of explaining mean returns is completely irrelevant as far as the decision is 

concerned of whether to interpret and use the variables as factors or as characteristics. (To that 

end we should only consider the “first-pass” time-series fits, as we discuss in the following). 

Explanatory Power of Shocks to the Risk Factors 

The only reasonable way to distinguish factor and characteristic views is to examine if the CMPs 

(or the factors based on the Fama-French approach) explain a significant part of the return 

variation over time. If so, the variables are useful for portfolio management and risk management. 

Table 8 reports actual and simulated time-series R2 averaged over all 35 test assets for the period 

July 1963 – December 2017, for models consisting of the market factor plus subsets of four 

additional factors derived from the size, value, profitability, and investment characteristics. The 

actual average time-series R2 for each model is calculated based on equation (19),

)/]'[2 (ΣΣSS)ΣS(S'Σ 1 TrTrRAVG
−= . The factors are obtained in three different ways: the CMP 

approach by which -1S = Σ Z  (with Z the N x K matrix of characteristics in which the market 

characteristics are captured by the market return covariances, MCV, with each of the test assets); 
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the FMP approach by which S for each factor equals +1 for the industry portfolios with the 30% 

highest values for the characteristic, equals -1 for the industry portfolios with the 30% lowest 

values for the characteristic, and 0 for all other test assets; the FF approach by which S for each 

factor equals 1 for the test asset associated with each factor (market MKT, size SMB, value 

HML, profitability RMW, and investment CMA) and zero for all other test assets.  The CMP 

results are in Panel A, the FF results in Panel B, and the FMP results are in Panel C.  

The actual results are compared to a background distribution to establish statistical significance. 

We provide simulations under the null hypothesis that the factor has no explanatory power. 

Naturally, any random factor will register some explanatory power, in part because it will have a 

100% R-squared in explaining the time series of itself. The background distribution is obtained 

either by permuting characteristics for the marginal factors or by drawing characteristics from a 

distribution that matches the first four moments of the true distribution of characteristics. We 

subdivide the characteristics 1 2[ ]=Z Z Z into two sets of characteristics. The first set 1Z is an N x 

K1 matrix consisting of K1 factors presumed to be true factors. The second set of characteristics 

2Z  is an N x K2 matrix representing the characteristics of K2 marginal factors to be evaluated. 

Random permutation of the rows of 2Z maintains the same distribution of characteristics but 

assigns the characteristics tied to the marginal factors to the wrong assets so that these 

characteristics are essentially useless whether or not they have an actual link to risk factors. The 

background distributions for the R2s are established by simulating J = 1,000 sets of marginal 

characteristics 2 jZ  via random permutation of the rows of Z. Drawing from a matched 

distribution involves drawing 1,000 random NxK2 matrices from a distribution that shares the 

same mean, variance, skewness, and kurtosis with the original 2Z . In both the permutation and 

draw cases, for the CMP and FMP approaches the background distributions are based on the 

imputed portfolio shares Sj related to the 1 2[  ]j j=Z Z Z , using [ ' ] / )j j j jTr Tr−1ΣS (S 'ΣS ) S Σ (Σ  to 

calculate the distribution of average time-series R2 under the null hypothesis that the marginal 

factors are not true risk factors. For the FF approach critical values are based on random 

permutations of the marginal factors from the S matrix directly, using only the permutation 

method. The critical values at the 50th, 90th, 95th, and 99th-percentile cutoffs from the 

permuting (moment-matched drawing) methods are presented in the left (right) panels. 
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 Results for the market factor 

First we establish whether the market factor (used directly or, equivalently, inferred from the 

market covariance, MCV, the market-based characteristic) is indeed a risk factor. For MCV by 

itself the R-squared is 50.85% for the CMP approaches.  The critical values equal 12.21% at the 

99%, and are greatly surpassed by the actual R-squared of 50.85%.  Thus, there is no doubt that 

the market by itself is a risk factor.  

It is not immediately clear, however, whether, when added to other factors (in particular, the four 

characteristics-based factors), the market still has marginal explanatory power for return 

fluctuations. To check this we assume the most extreme case that the four characteristics-based 

factors are all true risk factors and we confirm if the addition of the market has a significant 

marginal effect. The actual R-squared of all five factors combined is 53.09% when the four 

characteristics-based factors are obtained via the CMP method. Permuting the covariances with 

the market (but not the four characteristics) generates a distribution of R-squareds with 99% 

critical value of 19.91% so that again the market clearly has a significant marginal effect. Results 

are similar if the covariances with the market are drawn randomly (yielding a 99% critical value 

of 19.95%).   

In the special case of the market factor, the Fama-French approach does not involve use of 

characteristics; Fama and French (1993)  directly obtained MKT as the value-weighted return of 

all assets considered. Thus, we cannot evaluate the significance of MKT for the FF approach. For 

the FMP approach, the method would require holding the assets with the top 30% MCV and 

shorting those with the bottom 30% MCV (based on permutation of the MCV for the background 

distribution). The results for this FMP approach strongly support the market excess return as a 

factor, but are not shown in the table as the generated background distribution involves shorting 

stocks and accordingly is not representative of the distribution of the market excess return.   

 Results for single factors added to the market 

The explanatory power of the factor shocks for the 30 industry portfolios combined with the five 

Fama-French factor portfolios is provided in Table 8 where we look at the impact of various 

Fama-French style factors and CMPs on the explained variance of the portfolios (the FF30+5). 
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We examine first the explanatory power of each factor in isolation when added to the market 

factor. The results are as follows.  

Table 8  presents the average time-series R-squareds for models that include the market factor 

(captured by market covariances with the assets, MCV) as well as one of the additional factors 

(based on one of the characteristics).  This allows us to examine the significance of the additional 

factor in explaining time-series variation once a large fraction of the variation has already been 

absorbed by MCV. The marginal significance may be assessed by considering random 

alternative factors (without explanatory power) while keeping MCV constant. 

For the factor based on the size characteristic SZ using the CMP factor the actual R-squared is 

51.94% which exceeds the critical value at the 95% level of 51.85% as shown in Panel A for the 

Permutation-based background distribution. Thus, size when added to the market only may be 

viewed as a risk factor rather than a characteristic. For the FMP approach in Panel B, the actual 

R-squared is 60.03% which comfortably exceeds the critical value at the 99% level of 58.49%  

so that here size is also a risk factor when added to the market factor. Similarly, for the FF 

approach in Panel C, the size-based factor (here SMB) when added to the market factor (here 

MKT) generates an actual R-squared of 63.13% which clearly exceeds the 99% level of 58.56% 

so that size is a risk factor based on the FF approach as well. 

The factor based on the value characteristic BM may also be viewed as a risk factor when added 

to the market: The CMP approach generates an R-squared of 51.37% while the 99% critical 

value is 51.28%.  On the other hand, for the FMP approach the actual R-squared of 54.89% is 

only slightly above the median for the background distribution. A possible explanation may be 

the lack of power of the FMP approach documented in the previous section.  For the FF approach 

the actual R-squared of 53.57% is also not significant and, in fact, below the median of the 

background distribution. 

The profitability (OP)-based factor is not significant when added to the market based on CMP: 

the R-squared of 51.23% is below the critical 95% value of 51.25% in Panel A. Thus when 

added to the market only, the OP variable should be considered a characteristic rather than a risk 

factor. Note that OP is quite close to being significant since the 90% critical value is 51.22%. 

The other approaches are at odds. For the FMP approach, the actual R-squared is 58.65% which 
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exceeds the critical value at 99% of 58.52%, while for the FF approach the R-squared for the 

profit factor (RMW) is 52.96% which is below the median of the background distribution. 

The factor based on the investment characteristic INV is significant at the 95% level in Panel A 

using the CMP approach with R-squared of 51.01%.  For FMP and FF, however, INV is not 

significant. 

In general, the conclusions for the draw-based background distributions match those for the 

permutation-based distributions with the exception of the CMP approach for INV for which the 

actual R-squared of 51.009 is significant at 95% level for the permutation approach (critical 

value of 51.008) but not significant at the 95% level for the draw approach (critical value of 

51.011%). 

Overall, the market factor behaves consistent with being a risk factor, representing a systematic 

risk.  Based on the CMP approach, SZ and BM may be considered as risk factors when added to 

the market, whereas the evidence for OP and INV to be risk factors is mixed. 

If at least one of the characteristics is considered to be a clear risk factor then the question is not 

if the other characteristics are risk factors when added to the market, but if they are risk factors 

when added to the market plus other relevant risk factors. To deal with this issue we consider 

next the case where some or all of the other characteristics are risk factors in addition to the 

market. 

 Results for single factors added to the market and other factors 

Apart from the marginal characteristic to be considered as a possible risk factor, we consider 

here all other characteristics added to the market as risk factors.  We include all five 

characteristics, keeping four constant and permuting (or drawing for) the fifth (the marginal 

factor).  Thus we are controlling for other factors in assessing the significance of adding the 

marginal factor. By design we have four cases that all have the same actual R-squared but have 

different background distributions. 

For the CMP approach in Panel A (third grouping) we find an R-squared of 53.09% when we 

include the market as well as the four characteristic-based factors. For SZ this is significant at the 

95% level; for BM this is significant at the 99% level.  OP and INV, however, are not significant. 
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For the FMP approach in Panel B the R-squared is 69.99% when all four characteristics are 

added to the market. However, likely as a result of the lack of power of the FMP approach, while 

above the median in all four cases, none of the four characteristics are significant risk factors. 

For the FF approach only the SZ-based factor (SMB) may be considered a significant risk factor 

when added to the market plus the other three characteristics-based factors. 

We also look more specifically at whether size when added to value and market is significant or 

whether value when added to size and market is significant.  We find that SZ is significant when 

added to BM and MCV (at the 95% level) and BM is significant when added to SZ and MCV (at 

the 99% level) for the CMP approach.  For the FMP and FF approaches SZ is significant at the 

99% level but BM is not significant.   

Given these results we may view BM- and SZ-based factors as risk factors (at least given the 

CMP approach).  When we add these to the market, the question is whether further adding OP- 

and INV-based factors adds significantly to the R-squared.  As shown in Panel A (fourth 

grouping) neither OP nor INV adds significantly to the R-squared when added to MCV, SZ, and 

BM. The same is true for the FMP and FF approaches. 

Based on adding single factors at the margin, we conclude that the market, size, and value-based 

characteristics may be viewed as risk factors, but that the profitability and investment-based 

characteristics are not risk factors. 

Below we check if adding factors as a group changes this conclusion. We now use the discussion 

around equation (20) to keep one group of factors constant while permuting the marginal factors 

as a group. 

 Results for groups of factors added to the market and other factors 

In Table 8 (final grouping for all panels) we consider the joint significance of groups of factors 

added to a particular model. The results are as follows. 

Adding size and value jointly to the market increases the R-squared (that is the average time-

series R-squared of all test assets) significantly at the 99% level based on CMP (same for FMP 

and FF).  On the other hand, adding profitability and investment jointly to the market produces 
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an R-squared only slightly above the median for CMP (same for FF, but significant at the 95% 

level for FMP). 

Adding size and value jointly to the combination of market, profitability, and investment 

increases R-squared significantly at the 99% level for CMP and FF, but less than the 90% level 

for FMP.  But adding profitability and investment to the combination of market, size, and value 

does not significantly increase the R-squared (for all three approaches) 

 Overall choice between factors and characteristics 

Clearly, for the FF30+5 assets the market should be viewed as a factor rather than as a 

characteristic. Relying on our CMP approach, the SZ and BM characteristic also should be 

viewed as risk factors. Accordingly, the three factors of the Fama and French (1993) three-factor 

model are rightly viewed as risk factors.  On the other hand, the two factors added to generate the 

Fama and French (2015) five-factor model cannot be interpreted as risk factors since, while they 

may (or may not) explain additional variation in mean returns they do not have marginal 

explanatory power for time-series fluctuations in returns. 

8. Conclusion 

In empirical asset pricing the overwhelming focus has been on identifying which factors best 

explain the cross-section of mean asset returns. The prevailing method for identifying such risk 

factors relates them to asset characteristics.  The idea is that asset characteristics serve as proxies 

for asset loadings on unobservable factors. The approach pioneered by Fama and French (1993) 

takes the characteristics of a set of assets and then constructs a portfolio (FMP) that is long on 

assets with high values of the characteristic and short on assets with low values of the 

characteristic. The returns on this FMP are interpreted as realizations representing the 

unobservable risk factor responsible for the characteristic affecting returns. 

Fama and French’s FMP approach is reasonable and universally applied but has some drawbacks. 

First, it is ad hoc and leaves the choice to the researcher as to how many assets to hold long with 

which weight and how many to short with which weight. Second, it does not take the idea 

seriously that the characteristics represent loadings on an unknown factor. There is a correlation 

but the link between the FMP’s loadings and the characteristics is tenuous. Third, the FMPs tend 

to have a high variance component that is unrelated to the underlying factors. 
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To provide an alternative approach for mimicking factors avoiding these drawbacks we build on 

the work of Fama (1976), Ferson et al. (1999), and Balduzzi and Robotti (2008) to develop 

characteristics mimicking portfolios (CMPs) constructed as the up-to-scaling unique portfolios 

that maximize exposure to characteristics for any given variance. The loadings on CMP returns 

are exactly equal to the characteristics (useful for the beta formulation of asset pricing models) or, 

for a different scaling, the covariances between the CMP returns and asset returns equal the asset 

characteristics (useful for the stochastic discount factor formulation of asset pricing models).  

These different scalings do not affect the way the CMPs explain returns. Further, the CMPs are 

optimized to provide the most precise information about time series fluctuations which facilitates 

distinguishing true risk factors from spurious ones. Lastly, CMPs imply that there is no 

difference for pricing purposes of using characteristics or CMP factors as the explanatory 

variables. If characteristics indeed are tied to factor loadings then this is, of course, expected and 

using the characteristics or the loadings ought to have the same effect on asset returns. 

An overwhelming number of factors and characteristics has been considered for pricing financial 

assets.  Harvey, Liu, and Zhu (2015) distinguish 113 common (systematic) factors and 212 

characteristics.  We argue here in part that there is no point in distinguishing factors and 

characteristics when it comes to pricing.  Essentially, each of the 212 characteristics may be just 

as well modeled as a systematic risk factor; and each of the 113 systematic factors may be 

converted to a characteristic.  Neither would impact the explanatory power for determining 

expected asset returns.  The difference has no pricing implications of any kind as long as the 

mimicking factor is constructed as a CMP. Naturally this implies that the traditional approach of 

Jagannathan and Wang (1996) to choose between characteristics and factors by including both 

factor loadings and characteristics in the same regression is futile. While mimicking factors 

obtained by alternative methods will be distinguishable from the underlying characteristics, the 

distinction is an artifact of the assumed mimicking procedure which has little theoretical backing.  

Any difference found between the pricing impact of the factor as different from the 

characteristic’s pricing impact is therefore an artifact of the arbitrary mimicking process and not 

a robust feature of asset pricing. 

Of course, understanding whether expected returns are compensation for factor risk or are 

instead related to particular characteristics that may matter for behavioral reasons, is still 
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tremendously important. In the first case, expected returns come at the expense of increased risk; 

in the second case expected returns come without cost. Our point is simply that examining how 

well expected returns are explained is not informative about this issue.  With characteristics 

models explaining expected returns indistinguishably from CMP-factor-based models, a 

meaningful distinction can only be based on evaluating the risk implications.  

Tying factors explicitly to systematic risk would support an explanation that pricing depends on 

factor risk.  Apart from pricing, explaining risk matters also because it is relevant for portfolio 

choice, risk management and hedging. For all of these purposes, it is important to evaluate how 

well a model explains for all assets jointly the variation of asset returns over time. The criterion 

of the explained fraction of the time series variation of all asset returns, allows a useful 

distinction between characteristic- and risk-factor-based models. This is aided by considering 

CMP factors as a way to separate issues and focusing only on the time-series variation for which 

the two approaches differ. In standard methodology the focus is on explaining alphas or on 

second-pass performance (if not all factors are tradable). Rarely attention is paid to first-pass fits; 

after all they just provide a measure of the fraction of risk that is idiosyncratic, concerning which 

the theory is mum.  We argue here, however, that the first-pass R-squareds appropriately 

averaged over all assets constitutes a measure for the systematic risk explained, and that 

evaluating a model based on how much systematic risk it explains, both determines how useful 

the model is, and provides the only way to distinguish factors and characteristics.   

Creating return series equal to actual returns but adding a simulated factor with random 

realizations for which asset loadings depend on a known characteristic and a random component, 

we examine how the CMP and FMP factors, both constructed from the known characteristic, 

perform.  We find that the CMP factors always have more power than the FMP factors to reject 

the null hypothesis that the factor has no systematic risk. The exceptions for which FMP and 

CMP factors have similar power are in the unrealistic cases in which, other than due to the 

simulated factor, the assets are uncorrelated, or when the simulated factor explains more than 30% 

of the time-series fluctuations of returns. When the simulated factor explains more than 2% of 

time-series return fluctuations, the market factor is included, and the correlation between 

characteristics and loadings exceeds 70%, the power of the CMP factors is always above 70%. 
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We employ a bootstrapping-type approach of randomly permuting characteristics to provide a 

benchmark distribution for testing the null-hypothesis that converting a characteristic to a risk 

factor (with identical pricing implications) has no improvement in time-series explanatory power. 

For the four characteristics considered in Fama and French (2015) – size, value, profitability, and 

asset growth – we examine the empirical results for the 30 industry portfolios augmented with 

the five factor portfolios (four characteristics-based plus the market) (each from Fama and 

French).  Based on these test assets as an example the size, and value factors (the original Fama-

French factors) are legitimate risk factors but the profitability and asset-growth factors (the new 

Fama-French factors) are not.  
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Appendix:    Proof that )/' (Σ]ZZ)Σ[Z(Z' 11 TrTr −−  is the variance-weighted average time- 

  series R-squared of all assets ( 2
AVGR ). 

 
 
Since ZΣS =  we have 
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For the time series we have that  
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 The R-squared of the time-series regression in (A2 ) is 
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It is easy to see by inspection that 
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Thus, the following four metrics are equivalent: 

(1) the explained variance pooled over all time periods and assets divided by the sum of all these 
variances (the pooled R-squared); (2) )/]'[ (ΣΣSS)ΣS(S'Σ 1 TrTr − ; (3) )/' (Σ]ZZ)Σ[Z(Z' 11 TrTr −−  
given ZΣS = ; and (4) the variance-weighted average time-series R-squared of all assets. 
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Table 1 Descriptive Statistics of Time Series Features of the Test Assets 

This table reports the 10 largest eigenvalues (EVs) of the test asset excess returns between 1963.07 and 
2017.12. ( )Tr Σ  is the total variance (the sum of the variances of all test assets). The column R2s list the 
fraction of the total variance explained by each associated eigenvector in time series regressions. Test 
portfolios are the equal-weighted monthly excess returns of the Fama-French 30 industry portfolios (FF30) 
and the 30 industry portfolios plus the five zero-investment factor returns, MKT, SMB, HML, RMW, and 
CMA (FF35) from Fama and French (2015) for the period between 1963.07 and 2017.12 (T=654). 
 

  

  FF30 FF35 
  EV R2 EV R2 

1 983.01 70.57 1001.60 69.62 
2 113.45 8.14 113.80 7.91 
3 47.82 3.43 49.16 3.42 
4 40.69 2.92 42.18 2.93 
5 36.61 2.63 40.12 2.79 
6 23.31 1.67 23.94 1.66 
7 16.29 1.17 17.26 1.20 
8 14.73 1.06 15.91 1.11 
9 13.80 0.99 14.47 1.01 
10 10.83 0.78 11.30 0.79 
( )Tr Σ  1392.97  1438.58  
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Table 2 Benchmark Power Comparisons for Tests of Factor versus Characteristic 
 

This table displays the power of a test to reject the null hypothesis that a latent factor constructed from a 
characteristic has no explanatory power for the time series of returns. The criterion is the average 
variance-weighted R-squared for all test assets. The power is against an alternative in which N = 30 test 
assets over T = 654 periods have an identity covariance matrix supplemented with a random factor 
realization times random loadings (equation 21). The factor realizations are drawn from a normal 
distribution with annualized mean return of 5% and annualized Sharpe Ratio equal to 0.35 (equation 22). 
Loadings on the factor are the sum of characteristics drawn from a uniform distribution with mean and 
variance equal to one and a standard normal errors (equation 23).  The observable factors are derived in 
two ways from the observable random characteristics. First, using the CMP approach that derives the 
factor as ,F SIM

CMPr = SIM -1r 'Σ z , where z is the vector of random characteristics iz , Σ is the covariance matrix 
of the simulated returns and SIMr  is the NxT matrix of simulated return realizations; and second from the 
FMP approach that derives the factors as ,F SIM

FMPr = SIMr 's(z) , where 1is =  if iz  is in the top 30% among the 
assets i and 1is = −  if iz  is in the bottom 30%, and 0is =  otherwise. Parameters are chosen so that the 
“true” time-series average R-squared of explaining the returns by the latent factor equals 2%. Loadings 
are drawn based on equation (23) but with 1iγ =  for all i. The simulation consists of K = 1000 data sets. 
For each data set J = 1000 random characteristics unrelated to the factor loadings are obtained by 
randomly permuting the characteristics that do relate to the factor loadings. These establish a benchmark 
distribution under the null of no explanatory power. A realized R-squared for a characteristic related to 
factor loadings is considered to reject the null hypothesis if it is larger than 95% of the R-squareds for 
random permutations of the characteristics. The power (Power CMP and Power FMP) is calculated as the 
total number of rejections divided by K. Parameter c from equation (23) controls the correlation between 
loadings b and characteristics z, which is measured directly by Corr (b,z).  CMP R2 and FMP R2 indicate 
the average time-series R-squareds for the factors created from the characteristics using the CMP and 
FMP approaches, respectively. CMPperm R2 and FMPperm R2 indicate the average time-series R-
squareds for the factors created from permuted (useless) characteristics using the CMP and FMP 
approaches, respectively. True R2 is the average time-series R-squared targeted for the latent factor. 
Actual R2 is the realized average time-series R-squared for the latent factor (if this factor were 
observable).  All outcomes are stated in percentage terms. 
 

 

 

  

c 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
Power CMP  4.75 32.08 75.54 95.74 99.60 100.0 100.0 100.0 100.0 
Power FMP  5.35 19.21 57.52 86.93 96.93 99.21 99.60 99.90 99.90 

Corr (b,z) -1.21 22.80 43.36 58.92 69.92 77.53 82.81 86.54 89.23 
CMP R2 3.31 3.56 4.02 4.39 4.63 4.79 4.88 4.95 5.00 

CMPperm R2 3.31 3.45 3.68 3.85 3.95 4.01 4.05 4.07 4.09 
FMP R2 3.38 3.47 3.62 3.71 3.76 3.79 3.81 3.83 3.83 

FMPperm R2 3.37 3.36 3.34 3.32 3.31 3.31 3.30 3.30 3.30 
Actual R2  1.98 1.97 1.97 1.97 1.98 1.98 1.98 1.98 1.98 
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Table 3 Power Comparisons for Tests of Factor versus Characteristic 
 

This table displays the power of a test to reject the null hypothesis that a latent factor constructed from a 
characteristic has no explanatory power for the time series of returns. The criterion is the average 
variance-weighted R-squared for all test assets. The power is against an alternative in which N = 30 test 
assets over T = 654 periods have the same covariance matrix as the 30 industry portfolios for the period 
1963.07 – 2017.12 supplemented with a random factor realization times random loadings (equation 21). 
The factor realizations are drawn from a normal distribution with annualized mean return of 5% and 
annualized Sharpe Ratio equal to 0.35 (equation 22). Loadings on the factor are the sum of characteristics 
drawn from a uniform distribution with mean and variance equal to one and a standard normal errors 
(equation 23).  The observable factors are derived in two ways from the observable random characteristics. 
First, using the CMP approach that derives the factor as ,F SIM

CMPr = SIM -1r 'Σ z , where z is the vector of 
random characteristics iz , Σ is the covariance matrix of the simulated returns and SIMr  is the N x T matrix 
of simulated return realizations; and second from the FMP approach that derives the factors as 

,F SIM
FMPr = SIMr 's(z) , where 1is =  if iz  is in the top 30% among the assets i and 1is = −  if iz  is in the bottom 

30%, and 0is =  otherwise. Parameters are chosen so that the “true” time-series average R-squared of 
explaining the returns by the latent factor equals 2%. Loadings are drawn based on equation (23) but with 

1iγ =  for all i. The simulation consists of K = 1000 data sets. For each data set J = 1000 random 
characteristics unrelated to the factor loadings are obtained by randomly permuting the characteristics that 
do relate to the factor loadings. These establish a benchmark distribution under the null of no explanatory 
power. A realized R-squared for a characteristic related to factor loadings is considered to reject the null 
hypothesis if it is larger than 95% of the R-squareds for random permutations of the characteristics. The 
power (Power CMP and Power FMP) is calculated as the total number of rejections divided by K. 
Parameter c from equation (23) controls the correlation between loadings b and characteristics z, which is 
measured directly by Corr (b,z).  CMP R2 and FMP R2 indicate the average time-series R-squareds for 
the factors created from the characteristics using the CMP and FMP approaches, respectively. CMPperm 
R2 and FMPperm R2 indicate the average time-series R-squareds for the factors created from permuted 
(useless) characteristics using the CMP and FMP approaches, respectively. True R2 is the average time-
series R-squared targeted for the latent factor. Actual R2  is the realized average time-series R-squared for 
the latent factor (if this factor were observable). All outcomes are stated in percentage terms. 
 
 

 

 

  

c 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
Power CMP  5.84 7.43 13.56 23.66 34.36 42.87 49.50 55.05 58.32 
Power FMP  4.26 3.96 3.76 4.06 3.76 3.76 3.66 3.37 3.76 

Corr (b,z) 0.00 24.14 44.47 59.74 70.51 77.94 83.10 86.75 89.39 
CMP R2 2.68 2.81 3.08 3.38 3.63 3.82 3.97 4.07 4.15 

CMPperm R2 2.68 2.68 2.67 2.67 2.66 2.66 2.66 2.65 2.66 
FMP R2 6.45 6.41 6.33 6.28 6.24 6.22 6.21 6.20 6.20 

FMPperm R2 6.46 6.46 6.47 6.47 6.48 6.48 6.48 6.49 6.49 
Actual R2  2.00 2.00 1.99 1.99 1.99 1.99 1.99 1.99 1.99 
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Table 4 Power for Tests of Factor versus Characteristic with Varying True  R-squared 
 

This table displays the power of a test to reject the null hypothesis that a latent factor constructed from a 
characteristic has no explanatory power for the time series of returns. The criterion is the average 
variance-weighted R-squared for all test assets. The power is against an alternative in which N = 30 test 
assets over T = 654 periods have the same covariance matrix as the 30 industry portfolios for the period 
1963.07 – 2017.12 supplemented with a random factor realization times random loadings (equation 21). 
The factor realizations are drawn from a normal distribution with annualized mean return of 5% and 
annualized Sharpe Ratio equal to 0.35 (equation 22). Loadings on the factor are the sum of characteristics 
drawn from a uniform distribution with mean and variance equal to one and a standard normal errors 
(equation 23).  The observable factors are derived in two ways from the observable random characteristics. 
First, using the CMP approach that derives the factor as ,F SIM

CMPr = SIM -1r 'Σ z , where z is the vector of 
random characteristics iz , Σ is the covariance matrix of the simulated returns and SIMr  is the NxT matrix 
of simulated return realizations; and second from the FMP approach that derives the factors as 

,F SIM
FMPr = SIMr 's(z) , where 1is =  if iz  is in the top 30% among the assets i and 1is = −  if iz  is in the bottom 

30%, and 0is =  otherwise. Loadings are drawn based on equation (23) but with 1iγ =  for all i. The 
simulation consists of K = 1000 data sets. For each data set J = 1000 random characteristics unrelated to 
the factor loadings are obtained by randomly permuting the characteristics that do relate to the factor 
loadings. These establish a benchmark distribution under the null of no explanatory power. A realized R-
squared for a characteristic related to factor loadings is considered to reject the null hypothesis if it is 
larger than 95% of the R-squareds for random permutations of the characteristics. The power (Power 
CMP and Power FMP) is calculated as the total number of rejections divided by K. Parameter c from 
equation (23) controls the correlation between loadings b and characteristics z, which is measured directly 
by Corr (b,z) and is set equal to 1 in this table.  CMP R2 and FMP R2 indicate the average time-series R-
squareds for the factors created from the characteristics using the CMP and FMP approaches, respectively. 
CMPperm R2 and FMPperm R2 indicate the average time-series R-squareds for the factors created from 
permuted (useless) characteristics using the CMP and FMP approaches, respectively. Actual R2  is the 
realized average time-series R-squared for the latent factor (if this factor were observable). All numbers 
are stated in percentage terms. 
 
 
 

 

 

  

True R2 0.50 1.00 2.00 4.00 8.00 16.00 32.00 
Power CMP  9.70 16.34 32.08 52.87 68.51 77.13 80.89 
Power FMP  4.85 4.75 4.65 5.05 8.42 29.41 69.80 

Corr (b,z) 70.15 70.15 70.15 70.15 70.15 70.15 70.15 
CMP R2 2.99 3.25 3.64 4.08 4.43 4.44 3.82 

CMPperm R2 2.66 2.67 2.66 2.63 2.54 2.33 1.90 
FMP R2 6.30 6.20 6.18 6.61 8.59 14.51 29.06 

FMPperm R2 6.59 6.55 6.49 6.42 6.48 7.34 11.45 
c  1.00 1.00  1.00 1.00  1.00 1.00  1.00 

Actual R2  0.50 1.00 2.01 4.01 8.01 15.97 31.81 
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Table 5 Power for a Multiplicative Loading-Characteristic Distortion 
 

This table displays the power of a test to reject the null hypothesis that a latent factor constructed from a 
characteristic has no explanatory power for the time series of returns. The criterion is the average 
variance-weighted R-squared for all test assets. The power is against an alternative in which N = 30 test 
assets over T = 654 periods have the same covariance matrix as the 30 industry portfolios for the period 
1963.07 – 2017.12 supplemented with a random factor realization times random loadings (equation 21). 
The factor realizations are drawn from a normal distribution with annualized mean return of 5% and 
annualized Sharpe Ratio equal to 0.35 (equation 22). Loadings on the factor are the sum of characteristics 
drawn from a uniform distribution with mean and variance equal to one times a uniformly distributed 
random variable with (0,1) support and a standard normal errors (equation 23).  The observable factors 
are derived in two ways from the observable random characteristics. First, using the CMP approach that 
derives the factor as ,F SIM

CMPr = SIM -1r 'Σ z , where z is the vector of random characteristics iz , Σ is the 
covariance matrix of the simulated returns and SIMr  is the NxT matrix of simulated return realizations; and 
second from the FMP approach that derives the factors as ,F SIM

FMPr = SIMr 's(z) , where 1is =  if iz  is in the 
top 30% among the assets i and 1is = −  if iz  is in the bottom 30%, and 0is =  otherwise. Parameters are 
chosen so that the “true” time-series average R-squared of explaining the returns by the latent factor 
equals 2%. Loadings are drawn based on equation (23) but with 1iγ =  for all i. The simulation consists of 
K = 1000 data sets. For each data set J = 1000 random characteristics unrelated to the factor loadings are 
obtained by randomly permuting the characteristics that do relate to the factor loadings. These establish a 
benchmark distribution under the null of no explanatory power. A realized R-squared for a characteristic 
related to factor loadings is considered to reject the null hypothesis if it is larger than 95% of the R-
squareds for random permutations of the characteristics. The power (Power CMP and Power FMP) is 
calculated as the total number of rejections divided by K. Parameter c from equation (23) controls the 
correlation between loadings b and characteristics z, which is measured directly by Corr (b,z).  CMP R2 
and FMP R2 indicate the average time-series R-squareds for the factors created from the characteristics 
using the CMP and FMP approaches, respectively. CMPperm R2 and FMPperm R2 indicate the average 
time-series R-squareds for the factors created from permuted (useless) characteristics using the CMP and 
FMP approaches, respectively. True R2 is the average time-series R-squared targeted for the latent factor. 
Actual R2  is the realized average time-series R-squared for the latent factor (if this factor were 
observable). All outcomes are stated in percentage terms. 
 
 

 

 

  

c 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
Power CMP  6.04 9.11 25.84 49.11 71.09 85.35 91.88 95.54 97.43 
Power FMP  5.74 5.35 4.95 4.65 3.96 4.36 4.36 3.47 3.66 

Corr (b,z) -0.34 23.83 44.33 59.73 70.56 78.02 83.19 86.84 89.47 
CMP R2 60.10 60.24 60.53 60.85 61.11 61.32 61.47 61.58 61.66 

CMPperm R2 60.10 60.20 60.40 60.57 60.69 60.78 60.83 60.87 60.90 
FMP R2 62.62 62.95 63.40 63.64 63.77 63.84 63.88 63.91 63.93 

FMPperm R2 62.67 62.93 63.32 63.57 63.72 63.80 63.85 63.88 63.90 
True R2 1.98 1.99 2.00 2.01 2.01 2.01 2.02 2.02 2.02 
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Table 6 Power for Tests of Factor versus Characteristic with Market Factor 
 

This table displays the power of a test to reject the null hypothesis that a latent factor constructed from a 
characteristic has no explanatory power for the time series of returns. The criterion is the average 
variance-weighted R-squared for all test assets. The power is against an alternative in which N = 30 test 
assets over T = 654 periods have the same covariance matrix as the 30 industry portfolios for the period 
1963.07 – 2017.12 supplemented with a random factor realization times random loadings (equation 21). 
The factor realizations are drawn from a normal distribution with annualized mean return of 5% and 
annualized Sharpe Ratio equal to 0.35 (equation 22). Loadings on the factor are the sum of characteristics 
drawn from a uniform distribution with mean and variance equal to one and a standard normal errors 
(equation 23).  The observable factors are derived in two ways from the observable random characteristics. 
First, using the CMP approach that derives the factor as ,F SIM

CMPr = SIM -1r 'Σ z , where z is the vector of 
random characteristics iz , Σ is the covariance matrix of the simulated returns and SIMr  is the N x T matrix 
of simulated return realizations; and second from the FMP approach that derives the factors as 

,F SIM
FMPr = SIMr 's(z) , where 1is =  if iz  is in the top 30% among the assets i and 1is = −  if iz  is in the bottom 

30%, and 0is =  otherwise. The market factor is the value-weighted average of the industry portfolio 
returns. The market characteristic used for constructing the market CMP is the covariance between 
portfolio return and market return. Parameters are chosen so that the “true” time-series average R-squared 
of explaining the returns by the latent factor equals 2%. Loadings are drawn based on equation (23) but 
with 1iγ =  for all i. The simulation consists of K = 1000 data sets. For each data set J = 1000 random 
characteristics unrelated to the factor loadings are obtained by randomly permuting the characteristics that 
do relate to the factor loadings. These establish a benchmark distribution under the null of no explanatory 
power. A realized R-squared for a characteristic related to factor loadings is considered to reject the null 
hypothesis if it is larger than 95% of the R-squareds for random permutations of the characteristics. The 
power (Power CMP and Power FMP) is calculated as the total number of rejections divided by K. 
Parameter c from equation (23) controls the correlation between loadings b and characteristics z, which is 
measured directly by Corr (b,z).  CMP R2 and FMP R2 indicate the average time-series R-squareds for 
the factors created from the characteristics using the CMP and FMP approaches, respectively. CMPperm 
R2 and FMPperm R2 indicate the average time-series R-squareds for the factors created from permuted 
(useless) characteristics using the CMP and FMP approaches, respectively. True R2 is the average time-
series R-squared targeted for the latent factor. Actual R2  is the realized average time-series R-squared for 
the latent factor (if this factor were observable). All outcomes are stated in percentage terms. 
 
 

 

c 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
Power CMP  6.83 9.21 20.40 41.19 60.79 74.16 81.39 85.94 87.82 
Power FMP  5.64 5.64 5.15 4.85 4.65 4.16 4.46 4.26 4.36 

Corr (b,z) -0.01 23.40 42.80 56.38 65.30 71.13 75.01 77.68 79.56 
CMP R2 60.08 60.21 60.48 60.75 60.96 61.11 61.22 61.29 61.35 

CMPperm R2 60.08 60.18 60.37 60.52 60.62 60.69 60.73 60.76 60.78 
FMP R2 62.66 63.00 63.42 63.65 63.76 63.83 63.86 63.89 63.90 

FMPperm R2 62.65 62.91 63.29 63.52 63.65 63.72 63.76 63.79 63.81 
Actual R2 2.01 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00 
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Table 7 Model Performance in Explaining Mean Returns 

This table reports the Fama-MacBeth cross sectional regressions in the left panel and GRS time-series 
regression results are reported in the right panel. Test portfolios (FF35) are the equal-weighted monthly 
excess returns of the Fama-French 30 industry portfolios plus the five zero-investment factor returns 
(MKT, SMB, HML, RMW, and CMA) from Fama and French (2015) for the period between 1963.07 and 
2017.12 (T=654). MCV is the covariance between portfolio returns and MKT, estimated during the same 
sample period. The four other characteristics are the time-series averages of the log(market capitalization) 
(SZ) and the book-to-market ratio (BM) were provided by Kenneth French’s website along with the 
corresponding returns; operating profitability (OP) and investment (INV) were constructed according to 
the FF30 industry definitions. The characteristic-mimicking portfolios (CMPs) are formed as 1−Σ Z  where 
Z  represents either one of the four characteristics (SZ, BM, OP, INV) and Σ is the covariance matrix of 
the asset excess returns. CMP returns are constructed by multiplying the FF35 excess returns to each of 
the CMPs.The factor-mimicking portfolios (FMPs) are formed according to Fama-French style market 
neutral portfolios. The size-based portfolio is formed by assigning 1s (-1s) to the smallest (biggest) 30% 
of the 30 industry portfolios based on SZ. The value-based portfolio is formed by assigning 1s (-1s) to the 
30% of the 30 industry portfolios with the highest (lowest) BM. The profitability-based portfolio is 
formed by assigning 1s (-1s) to the 30% of the industry portfolios with the highest (lowest) OP. The 
investment-based portfolio is formed by assigning 1s (-1s) to the industry portfolios with the lowest 
(highest) INV. For each the weight on the five Fama-French factors is set to 0s. The FMP returns are 
constructed by weighting the FF35 returns with each of the FMPs. The left part of panels A, B, and C 
report the average of the cross-sectional regression estimates (the prices of covariance risk, are reported in 
the first line and the Black-Jensen-Scholes t-statistics are reported on the next line). R2 is obtained in a 
single cross-sectional regression by regressing averages of asset excess returns on characteristics directly 
(Panel A), on the covariances between portfolio excess returns and each of the FMP returns (Panel B), 
and on the Fama-French risk factors (Panel C). The right sides of panels A, B, and C reports the GRS F-
statistics, the p-value with numerator degrees of freedom of T-N-K and denominator degrees of freedom 
of N-K, and the mean absolute alphas of each time-series regressions. K represents the number of factors 
involved in the regressions and N is the number of test portfolios here equal to 35. 
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Panel A (CMP Factors) 

Cons MCV SZ BM OP INV R2 GRS-F p-value Abs alpha 
0.370 0.020     0.452 4.961 0.000 0.225 
5.959 1.871         
0.302 0.003 0.074 -0.103   0.642 4.284 0.000 0.263 
6.081 0.221 2.829 -0.963       
0.284 0.004 0.086 -0.131 -0.084 -0.322 0.659 2.519 0.000 0.256 
3.993 0.252 3.092 -1.130 -0.587 -1.138     

 
 

Panel B (FMP Factors) 
Cons MCV SZ BM OP INV R2 GRS-F p-value Abs alpha 
0.370 0.020     0.452 4.961 0.000 0.225 
5.959 1.871         
0.381 0.008 -0.005 0.000   0.640 4.970 0.000 0.310 
6.642 0.598 -1.915 0.171       
0.397 0.017 -0.003 -0.002 0.003 -0.000 0.694 5.240 0.000 0.365 
8.592 0.689 -0.825 -0.794 1.177 -0.054     

 
 

Panel C (Fama-French Factors) 
Cons MKT SMB HML RMW CMA R2 GRS-F p-value Abs alpha 
0.370 0.020     0.452 4.961 0.000 0.225 
5.959 1.871         

0.434 0.025 -0.019 -0.020   0.497 4.588 0.000 0.182 
8.653 2.295 -1.131 -1.075       
0.355 0.041 -0.013 -0.081 0.006 0.140 0.561 3.567 0.000 0.207 
5.920 2.405 -0.707 -1.901 0.191 1.617     
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Table 8 Significance of Additional Factors in Explaining Time-Series Fluctuations  
 
This table reports the actual and simulated time-series R2 averaged over all test assets for models 
consisting of the market factor plus variations of 4 additional factors derived from the size (log of market 
capitalization SZ), value (book-to-market ratio BM), profitability (operating profit OP), and investment 
(net investment INV) characteristics. The test assets are the equal-weighted monthly excess returns of the 
Fama-French 30 industry portfolios together with the 5 Fama and French (2015) factor portfolios for the 
period from 1963.07 to 2017.12. The actual average time-series R2 for each model is calculated based on 

)/]'[2 (ΣΣSS)ΣS(S'Σ 1 TrTrRAVG
−= , where S represents a N x K (number of factors by number of test assets) 

matrix with the portfolio weights of each of the traded factors on the 35 test assets. Σ  is the covariance 
matrix of the test asset returns. The factors are obtained in three different ways: the CMP approach by 
which -1S = Σ Z  (with Z the N x K matrix of characteristics where the market characteristics are captured 
by the market return covariances, MCV, with each of the test assets); the FF approach by which S for 
each factor equals 1 for the test asset associated with each factor (market MKT, size SMB, value HML, 
profitability RMW, and investment CMA) and zero for all other test assets; the FMP approach by which S 
for each factor equals +1 for the industry portfolios with the 30% highest values for the characteristic, 
equals -1 for the industry portfolios with the 30% lowest values for the characteristic, and 0 for all other 
test assets.  The CMP results are in Panel A, the FF results in Panel B, and the FMP results are in Panel C. 
The actual results are compared to a background distribution to establish statistical significance. The 
background distribution is obtained in two different ways. First, based on permutations of the 
characteristics determining the marginal factors. To this end we subdivide the characteristics 

1 2[ ]=Z Z Z into two sets of characteristics. The first set 1Z is an NxK1 matrix consisting of K1 factors 
presumed to be true factors. The second set of characteristics 2Z  (listed in bold face in the table) is an 
NxK2 matrix representing the characteristics of K2 marginal factors to be evaluated. Random permutation 
of the rows of 2Z maintains the same distribution of characteristics but assigns the characteristics tied to 
the marginal factors to the wrong assets so that these characteristics are essentially useless whether or not 
they have an actual link to risk factors. The background distributions for the R2s are established by 
simulating J = 1,000 sets of marginal characteristics 2 jZ  via random permutation of the rows of Z. 
Second, based on random draws of the characteristics determining the marginal factors. This method 
involves drawing 1,000 random NxK2 matrices from a distribution that shares the same mean, variance, 
skewness, and kurtosis with the original 2Z .  In both cases, for the CMP and FMP approaches the 
background distributions are based on the imputed portfolio shares Sj related to the 1 2[  ]j j=Z Z Z , using 

[ ' ] / )j j j jTr Tr−1ΣS (S 'ΣS ) S Σ (Σ  to calculate the distribution of average time-series R2 under the null 
hypothesis that the marginal factors are not true risk factors. For the FF approach critical values are based 
on random permutations of the marginal factors from the S matrix directly, using only the permutation 
method. The critical values at the 50th, 90th, 95th, and 99th-percentile cutoffs from the permuting 
(moment-matched drawing) methods are presented in the left (right) panels. 
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Panel A  (CMP Factors) 

  Permute Draw 
 R2 50% 90% 95% 99% 50% 90% 95% 99% 

MCV 50.846 7.216 9.407 10.286 12.212 7.438 10.328 11.322 13.340 
SZ BM OP INV,  MCV 53.092 15.829 17.498 18.205 19.914 15.905 17.684 18.345 19.948 
MCV,  SZ 51.935 51.608 51.789 51.848 51.968 51.617 51.866 51.953 51.935 
MCV,  BM 51.368 51.139 51.209 51.233 51.276 51.142 51.211 51.236 51.280 
MCV,  OP 51.231 51.137 51.224 51.252 51.311 51.141 51.223 51.251 51.317 
MCV,  INV 51.009 51.002 51.007 51.008 51.010 51.003 51.009 51.011 51.014 
MCV BM OP INV,  SZ 53.092 52.773 52.983 53.055 53.201 52.791 53.062 53.158 53.354 
MCV SZ OP INV,  BM 53.092 52.790 52.907 52.946 53.025 52.795 52.919 52.961 53.043 
MCV SZ BM INV,  OP 53.092 53.101 53.212 53.251 53.336 53.112 53.221 53.260 53.350 
MCV SZ BM OP,  INV 53.092 53.081 53.092 53.095 53.101 53.082 53.094 53.098 53.107 
MCV BM,  SZ 52.625 52.233 52.433 52.501 52.654 52.245 52.512 52.600 52.805 
MCV SZ,  BM 52.625 52.338 52.449 52.486 52.557 52.344 52.462 52.501 52.576 
MCV SZ BM,  OP 52.915 52.919 53.020 53.057 53.131 52.927 53.031 53.068 53.150 
MCV SZ BM,  INV 52.794 52.783 52.793 52.796 52.800 52.784 52.796 52.800 52.808 
MCV,  SZ BM 52.625 51.993 52.205 52.277 52.418 51.998 52.279 52.375 52.561 
MCV,  OP INV 51.407 51.315 51.410 51.441 51.502 51.325 51.414 51.447 51.520 
MCV OP INV,  SZ BM 53.092 52.534 52.749 52.821 52.969 52.532 52.821 52.921 53.126 
MCV SZ BM,  OP INV 53.092 53.094 53.206 53.246 53.333 53.106 53.221 53.261 53.357 

 

Panel B  (FMP Factors) 
  Permute Draw 

 R2 50% 90% 95% 99% 50% 90% 95% 99% 
MCV,  SZ 60.034 54.814 56.849 57.405 58.485 54.839 56.837 57.358 60.034 
MCV,  BM 54.887 54.800 56.825 57.349 58.519 54.813 56.848 57.395 58.554 
MCV,  OP 58.644 54.795 56.821 57.418 58.622 54.789 56.803 57.331 58.480 
MCV,  INV 55.770 54.807 56.855 57.391 58.524 54.796 56.831 57.373 58.487 
MCV BM OP INV,  SZ 69.991 69.124 70.215 70.506 71.150 69.137 70.225 70.522 71.119 
MCV SZ OP INV,  BM 69.991 69.988 71.003 71.250 71.629 69.990 71.004 71.255 71.612 
MCV SZ BM INV,  OP 69.991 69.116 70.286 70.609 71.169 69.114 70.293 70.604 71.142 
MCV SZ BM OP,  INV 69.991 69.523 70.470 70.722 71.037 69.531 70.474 70.709 71.034 
MCV BM,  SZ 64.170 58.171 60.250 61.031 62.437 58.154 60.271 61.020 62.543 
MCV SZ,  BM 64.170 63.098 65.150 65.634 66.372 63.061 65.120 65.605 66.366 
MCV SZ BM,  OP 67.489 66.606 67.940 68.296 68.858 66.617 67.976 68.333 68.853 
MCV SZ BM,  INV 66.920 66.612 67.933 68.279 68.840 66.613 67.933 68.277 68.839 
MCV,  SZ BM 64.170 58.448 60.919 61.804 63.468 58.457 60.967 61.802 63.411 
MCV,  OP INV 63.205 58.442 60.915 61.783 63.371 58.471 60.906 61.725 63.480 
MCV OP INV,  SZ BM 69.991 68.378 70.017 70.478 71.393 68.344 70.000 70.445 71.342 
MCV SZ BM,  OP INV 69.991 69.015 70.353 70.688 71.290 68.997 70.367 70.710 71.324 
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Panel C  (FF Factors) 
 R2 50% 90% 95% 99% 
MKT,  SMB 63.130 54.811 56.844 57.388 58.555 
MKT,  HML 53.567 54.823 56.833 57.392 58.527 
MKT,  RMW 52.956 54.828 56.844 57.394 58.559 
MKT,  CMA 52.292 54.801 56.850 57.427 58.579 
MKT HML RMW CMA,  SMB 68.153 59.841 61.876 62.367 63.333 
MKT SMB RMW CMA,  HML 68.153 69.117 71.262 71.612 72.006 
MKT SMB HML CMA,  RMW 68.153 70.129 72.262 72.567 72.928 
MKT SMB HML RMW,  CMA 68.153 70.894 73.070 73.380 73.708 
MKT HML,  SMB 66.759 57.545 59.669 60.286 61.511 
MKT SMB,  HML 66.759 66.345 68.432 68.818 69.349 
MKT SMB HML,  RMW 67.834 69.813 71.944 72.270 72.612 
MKT SMB HML,  CMA 67.088 69.831 71.948 72.270 72.615 
MKT,  SMB HML 66.759 58.469 60.934 61.814 63.419 
MKT,  RMW CMA 54.450 58.447 60.945 61.756 63.381 
MKT RMW CMA,  SMB HML 68.153 61.740 64.172 64.981 66.518 
MKT SMB HML,  RMW CMA 68.153 72.696 74.414 74.730 75.309 
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