Chapter VIII. Dynamic Asset Pricing—General Aspects

The objective in this chapter is to convey general insights concerning the characteristics of asset prices and
returns in a dynamic environment. While much of the discussion in the finance literature has been couched in a
continuous time diffusion framework, the current discussion will be discrete time. The advantages of a discrete-time
approach are that it requires less technical baggage and that the formulations are more intuitive. Asaresultitiseasier
to apply the material creatively. Asinmost of the continuous-time-based literature, a dynamic programming approach
will be employed that has the advantage of, in a sense, combining all future time periods into one. Topics discussed
in this chapter are: basic properties of representative investor dynamic asset pricing models, conditions under which
the CAPM applies in a multi-period economy, the Merton model, the consumption CAPM, and a discussion of asset
pricing puzzles and other stylized facts.

1. BASIC PROPERTIESOF DYNAMIC ASSET PRICING MODELS
(a) A Representative Investor Model

o simplify matters initially, assume that a representative investor exists. Now consider the following

decision problem. The representative investor maximizes expected utility for atime-separable infinite

horizon utility function. Choicevariablesarethe portfolio and the consumption level in each period and
the constraint is lifetime wealth. Maximize:

(D) E, i plu(c), 0<p<1,
t=0

Subject to:
n

s[izl.

0

@ W -RaW-o), Ry~ ISR,

Notationisstandard, withindividual returnsindicated by superscriptsand with superscript Oindicating therisk free asset.
Portfolio shares add to 1 in each period. Returns are assumed to be uncorrelated over time. Thisisakey assumption
that we will relax later in this chapter.

The decision problem in equations (1) and (2) can be reformulated using the dynamic programming approach
(see Appendix D):

©) V(W) = [u(e) + BEV(W. )],

max .
G {Sll}inzl
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Subject to:

(4) Wip = R (We-¢), Ry = Rtf+1 + Elsti(Rtid*Rttl)-

Note that the last condition is formed by combining the two last conditionsin equation (2).
First-order conditions for this decision problem are for each timet :

(5) UC(Ct) = BEt[R[+1vw(V\/t+1)] )

®  EL(R.,-RI)Vy(W, )] =0, forali.

Subscripts denote partia derivatives except of course for the subscript t which indicates the period. Equation (5) states
that the marginal utility of current consumption should be set equal to the marginal cost of decreasing real wealth by one
unit, which is equal to the gross real portfolio return evaluated at how wealth affects discounted maximum expected
lifetime utility at the margin. Equation (6) essentially requires that portfolios are chosen to set the expected marginal
benefit of al returns equal.

The envelope condition is:

(7) Ve (W) = BE[R.Viy (W, 1)]-
Combining eguations (5) and (7) produces:

(8) Vin (W) = ug(c).
Equation (8) implies, with the help of the implicit function theorem, that current consumption is a function of current
wealth only. Since the consumption function is strictly concave and since standard dynamic programming arguments

show that the value function is strictly concave as well, consumption is a monotonically increasing function of wealth.

Updating equation (8) by one period and then substituting into equation (5) and separately into equation (6)
yields:

©) u.(c) = BEIR. ju(c. )],
(10 E[(R';-R')uyc.,)] -0, forali.
If equation (10) ismultiplied by sti and then summed over al i it becomes clear that the equation holdsfor R, aswell

as for al individua returns. [Note that R ,, represents the (value weighted) “market return” since we have a
representative investor]. It isthus easy to show using equation (10) that equation (9) holds for all assets:
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SECTION 1. BASIC PROPERTIES OF DYNAMIC ASSET PRICING MODELS

(D) u(c,) = BEt[Rtich(Chl)], for all i.
(b) The Sochastic Discount Factor

Thereare severa implicationsthat can be drawn from the simple model above based on the material in Chapter
VII. We can write:

(12) Et[rnl+lRti+l] = 1' rnlJrl - Bl"lc(CtJrl)/l"lc(ct) :

Thus, the stochastic discount factor that prices all assets is equal to the marginal rate of intertemporal substitution.
Rewards for taking risk are related only to uncertainties in aggregate consumption that cause fluctuations in marginal
utility.

Similarly, we can formulate the marginal rate of intertemporal substitution in terms of wealth. Realizing that
equation (7) holds for all assetsi aswell [or simply using equation (8) in equation (12)] we have:

(13 EIm,RLD =1, mo =BV (W, )/Vy (W),

We also know from Chapter VI that formulations (12) and (13) are equivalent to the following single-beta
formulation:

(14) E(Rti+1) = Rti+1 * Bim[E(R.,) - Rti+1] ,
where (3, = Cov(Rttl,mM)/Var(m“l) :

If m,, isgiven asin equation (12) we have a special case of the Consumption CAPM. A specia case because of the
specific assumptions made here — that returns are serially uncorrelated and that a representative consumer exists.

(c) The CAPM with Multiple Periods
We can derive the CAPM directly under the standard normality assumption. Multi-variate normality of all

returnsimpliesthat end-of-period wealth isnormally distributed. From equation (6), using the definition of covariance,
we find:

15  EL(R.;-RIDIEIVW(W,. )] = -Cov[R, Vy, (W,.,)].

Employing Stein's Lemma and using from equation (4) the fact that the covariance term can be rewritten using
Rt+l = Vvt+1/(vvt+1 - Ct)’yieIdS:
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- E[Vow(W. )]
(W, = QO E [V (W, )]

16 E(R';) =R, + Cov[R'; R4l

The familiar next step is then to apply equation (10) to the market return:

- B[V (W, )]

— f +
@0 BRa) =R o E VoW, ]

Var (R ;).

Dividing equation (16) by (17) produces the familiar equation:
(18  E(R',) - E(R') + B[E(R.)) -E(R"))].
where B, = Cov,[R';,R,]/Var(R.,) -

Thus, the CAPM may hold in amulti-period framework asfirst pointed out by Fama (1970). The general requirement
isfor the value function to be a function of wealth only asisthe casein thismodel. Constantinides (1980) shows that
four conditions are needed for the value function to depend on wealth only: (1) homothetic utility so that current utility
can be summarized in oneindex; (2) arepresentative consumer exists (as guaranteed by the assumption of complete
markets); (3) utility isnot state dependent; and (4) the set of returnsis serially uncorrelated. Thefirst three conditions
apply to astatic framework aswell asin adynamic one. Wediscussed thefirst two explicitly in Chapter IV (the sections
on non-homothetic utility and intertemporal asset pricing). The three conditions are satisfied here because (1) we
consider one good only, (2) we assumed a representative consumer, and (3) utility depends on the consumption good
only. Thefourth condition only becomesrelevant in adynamic model. This condition isrelaxed in the Merton (1973)
model.

(d) The Random Walk Property of Sock Prices

Returns are by definition equal to the dividend yield plus the percentage capital gain. Or:

i i
dt+l + pt+1
i

Py

19 R, =

where dti , pti indicate, respectively, thedividend paid in period t on asset i and the pricein periodt of asseti. Wethus
consider the ex-dividend price of the asset. Using the definition of return in equation (11) produces:

(200 pu(c) = BEL(A., +ps) uglc. )],
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for al i and t. Solving this linear first-order difference equation forward, and using the fact that the transversality
condition guaranteesthat lim, . p'u.(c,) = O, generates:

@)  p - 2 BIE[d; u(c.)]/ ulc) -
2

Asset prices equal the present value of currently expected future dividends, with the dividends each weighted at their
relativemarginal utility benefit at thetimeof receipt. Noticethat under risk neutrality themarginal utility of consumption
isconstant. Hence the stock price of any asset i would be determined simply asthe present value of its future dividends.

The random walk property of stock prices follows from eguation (20) under an assumption of risk neutrality.
For constant marginal utility, equation (20) becomes:

220  E(d',+pl.) = (1B)P, .

The expected value of the asset with dividends re-invested is equal to the current price plus risk-free opportunity cost.
Or, in other words, the best guess of the what the value of an asset will be is the current price plusinterest. Thus, the
asset’s value follows a random walk with drift. The share price, adjusted for discounting and dividends should be
unpredictable.

(e) Bubbles

If we solve equation (22) for the current price, we get the following solution:

29 p - il BIE(d.) + v, (L/B), Ev., -y, foralt.
-

Typically it is assumed that vy, is zero. This solution would result directly from equation (21) for constant marginal
utility. However, it iseasy to check that, even for vy, not equal to zero, equation (22) holdsif we plug in equation (23)
for pti and ptl ;- The y, termisof coursethe”bubble’ term. For apositive bubble, the priceis above its fundamental
as determined by future dividends. The reason that price is above fundamentals is that the bubble is assumed to keep
growing: if you expect that the pricewill keep rising then it isrational to pay ahigher current price, evenif not warranted
by dividend prospects. Theirrational element here is that the share price is expected to grow to infinity as the bubble
term increases without limit as time goesto infinity. Eventually, all the wealth in the economy is not able to purchase
the share!
A popular formulation of bubbleswould set E, y,,, = y with

_ | 0 with probability F
@4 = { y/(1 - F) with probability 1 - F ,

In this case, the bubble keeps growing exponentially until it bursts. Thus, even though everybody knows the share price
is“too high” thereis no reason to get out since returns are sufficiently high when the bubble does not burst.
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(f) An Example for Constant Relative Risk Aversion
Assume that the preferences of the representative investor are given by:
25  u(c) = ¢ I (1-8).

To solve explicitly the savings/portfolio problem described before, assume a specific functional form for the value
function:

(26) V(W) = AW °/(1-38).

Now use the method of undetermined coefficientsto seeif avaluefor “A” can be found such that the budget constraint,
first-order conditions and the envel ope condition (or the Bellman equation itself) hold. From equations (4), (5) and (8)
(the latter standing in for the envel ope condition):

@) Wiy =R (W -c)
(28) ¢ = BE(R.LAW.S),
(299 ¢ =AW,
Combining the above three equations generates:
(30) 1=BEIR.(1-AY®)?].
Thus, the conjectured form of the value function is verified if:
(3) A-=[1-(BER. )]

By the assumption that the expected return follows awhite noise process with constant distribution, Aisindeed constant.
Note that formally we should a so check the Bellman eguation to seeif a constant should be added to the value function.
It is easy to check that the constant would be zero in this case.

A specia case of the example aboveisfor 6 = 1. It can be shown that we obtain the logarithmic utility function
in this case (formally by taking the limit of 6 - 1). Inthiscase wefind that A = 1/(1 - B)in equation (31) so that
¢, = (1-B)W, from equation (29). If we assume that the dividends of asset i are proportionate to aggregate
consumption, i.e., dti = c,, then equation (21) becomes pti = Bc,/ (1-p). Thereturn, using equation (19) then
equas R, = (1/B)c.,/c, .
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(g) The Random Walk Property for Consumption
Suppose that the overall return is a known constant (risk free). Then equation (9) above becomes:
(3 Elu(c.y)] = (UBR)uc) -

Thus, the marginal utility of consumption follows arandom walk. For quadratic preferences:
(33) E (c.,) = (1/BR)c,.

Consumptionfollowsarandomwalk. Inthiscaseit would beimpossibletoforecast changesin (aggregate) consumption,
no matter what you try.

(h) The Timing of Consumption

The above model assumed that consumption occurs at each period intime. An aternativeformulation assumes
that consumption only occursin somefinal period T. While thefirst approach is most common and appears to be more
realistic, there are some advantages to using the second approach. This approach is moretractable and allows focus on
the main impetusfor saving — putting money aside for retirement. It isthen easier to focus on the portfolio i ssues of how
to changerisk taking over time. Asthisiscrucial for determining asset prices, assuming consumption in thefinal period
only may be preferred for asset pricing models, even though it is currently uncommon to make this assumption.

In the traditional CAPM and other static asset pricing models, the timing of consumption is irrelevant since
consumption occurs only once during thefirst and final period. Evenif aformal two period model is used to derivethe
asset pricing implications, the first period makes no difference. Accordingly, the issue of consumption throughout or
only at the end, only becomes relevant for dynamic asset pricing.

2. THE INTERTEMPORAL CAPM
(a) Merton’s model with one state variable

far we assumed that the distribution of asset returns does not change over time. Inthiscase, evenina

ulti-period model, the CAPM holds under the standard assumptions (normality or élipticality in

particular). Merton (1973) based on Merton (1971) considers asset pricing under the condition that

investment opportunities may change over time. Hethusderiveswhat isoften called the Intertemporal CAPM (ICAPM).
Merton’s model is rooted in a continuous time stochastic dynamic programming framework that is technically
challenging. Whileit isrelatively easy to master abasic understanding that is sufficient to follow theliterature applying
the continuoustime stochasti ¢ dynamic programming approach, itisquitedifficult to conduct independent research using
this approach. In contrast, we will derivethe ICAPM in discrete time, where instead of assuming that returnsfollow a
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Brownian motion process, or more generally a diffusion process, we assume normality.

For the sake of concreteness, wewill first model achangeininvestment opportunitiesthrough one statevariable
only as in Merton (1990, Ch. 11). It is easy to generalize to the case in Merton where a vector of state variables
represents changes in investment opportunities over time, which we will do in the next section. We will use the same
model asin Section 1 with two modifications. Firgt, the risk free rate changes stochastically over time. That is, while
during any given period therisk free rateisknown (and thusisindeed risk free), therisk freerate for the next period will
change stochastically during the current period. Thisisthe simplest way to change the set of investment opportunities
over time. Returns on all other securities are assumed to be uncorrelated over time and are multi-variate normally
distributed conditional on therisk freerate for the upcoming period. Second, we no longer assumethat arepresentative
consumer exists and so consider the decision problem for some investor k.

max
@  VEWERD = kg

ggn | [UR(E) + BEVHWL R,

Subject to:

@ W -RGWE -6, R R D SRR,

® R, =F(Rl &)
Note that therisk freerate pre-set in period tis relevant for the portfolio returnin period t+1. Thevalue function now
depends on the current risk free rate as an additional state variable. Clearly, wealth has a different meaning when risk

free rates are high compared to when they are low.
First-order conditions for this decision problem are for each timet :

@ ue!) = BEIR V(WS R
5 E[(R.,-RHVw(WE, R )] =0, forali.

Wewill now use equation (5) to derive abeta asset pricing equation. Using the definition of covariance and converting
to net returns:

©)  E V(W) (e 1) = - Cov [ Vg (WS 1)y .
Given the assumption that returns are normally distributed so that w, isnormal and that p is normally distributed, we
can again apply my modest generalization of Sein’s Lemma [see Appendix C] stating that, when x, y, and z are

multivariate normal, then:

Cov[x, h(y,z)] = E[h;(y,2)]Cov(x,y) + E[h,(y, z)]Cov(X, 2) .
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Thus, applying the lemmato equation (6):
k k f
7Et[\/ww(W +10 r1+1)]

(I A TR Cov (WL 1)
Et[VW(VVt+1! rt+1)]

R W rly)l

o
— Cov, (I, 1, Mq)-
Et[VW(VVt+1! rt+1)]

Equation (7) suggests a two-factor CAPM result. However, the expression includes various terms that are
specific to individual k. The next step thusisto consider market equilibrium by aggregating over al individuals:

K v KWK ' f _ K _
@ > el Cov ( X Wiy, 1i.y)

k1 —E [V (WKL 1)

& B[V, (WS, 1l )]

. _
- ———— Cov,(r.y. 1)
k=1 Et[VWW(\Nt+1' Mee1)l

Thefirst covariance term can be rewritten using the fact that aggregate wealth in period t+1 must be equal to RtTl V\/tm.

That is the gross market return times initial market wealth. Note though that initial market wealth should be investor

wealth net of aggregate consumption and this should in turn be equal to the value of the aggregate asset portfolio.
Thus we can write:

. . . . .
©) Mg T = A Covt(rtn:l' fig) * B, Cov,(ry.q, ria),

where:

K\ k f
A - LY g E[Vw(Wisq, gl
t [}
k=1 7Et[VVl\(IW(\Ntlil’ rtf+1)]

L BV MG ) K BV W )

B, o k k f kel _ k k f ’
Et[VWW(V\/t+1' Meo1)] Et[VWW(V\/“l, Foa)]

Applying equation (9) to asset m (it is easy to check that, if equation (5) holds for any “primitive” asset i , it

R. BALVERS, WEST VIRGINIA UNIVERSITY. 148 FOUNDATIONS OF ASSET PRICING 5/01



CHAPTER VII. DYNAMIC ASSET PRICING — GENERAL ASPECTS

also hold for any portfolio, including the market portfolio):
(10) wh, -l = A Var,(r") + B Cov(r! ., 1)

Similarly, for an asset with return perfectly correlated with next period’ s risk free return,
(11) M- = ACov(r,,rly) + B Var(r,) .

Use equations (10) and (11) to solve for A, and B, :

1
f f
(Ar] _ Var (1,7, Cov,(ry.1, 1) TR

mof f f f
By Cov,(re.q, rr.q)  Var(ry,q) Miog — 1

Substitute the solution for A, and B, into equation (9) to obtain the expected return of any asset i as:
i f m f f f
(12) Hig — 1 = Bim(HM - I’t) + Bn(”pl - rt) )

with: f i m f m f i
_ Var(ri,y) Cov, (1.4, I\11) = Cov,(ry.q, rity) Cov(re,q, 1)
im vV f vV m C f myq2 !
art(rt+1) art(rt+1) - [ ovt(rt+l’ rt+1)]

m i f f m m i
_ Var(ry) Cov,(r.1, Me.q) = Cov(ry.q, riry) Cov(ry, 1)

f f
Var (r,,,) Var (r",) - [Cov,(r,.,, I 1)]?

Bif

Notice that the betas are simply the slope coefficients that would arise in a multi-variate regression, given that the
conditional covariances are constant over time.

Theintuition of equation (12) is that an investor is faced with two types of systematic risk. First the risk of
wealth fluctuation; second, changesin investment opportunities related to changesintherisk freerate. If therisk free
rate falls then, for an investor with positive net wealth, this is tantamount to a decrease in future consumption
opportunities. The investor would like to hedge herself against such a decrease in future risk free rates by keeping
securities in her portfolio the returns of which are negatively correlated with future interest rates. Thus, the risk
premium, u{d - rtf, on the asset that is perfectly correlated with the future risk free rate (that is, the second factor)
should bepositive. Notethat thisobservation explainsthefact that theyield curve, al elseequal, should haveapositive
dope. Empirically, one could take the return on long-term government bonds to represent the second factor. The“term
premium” in fact has been shown in ad hoc empirical work to have positive predictive value for future returns.

The original Merton model includes multiple factors that represent the current state of the investment
opportunity set. In particular, another factor could bethe equity premium or any other factor affecting futureinvestment
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returns. The Merton model does hot specify what these factorscould be. Inthat sensethe Merton model isvery similar
tothe APT inthat it providesalicense for afishing expedition. Just about any variable that is significant in explaining
the cross-section of asset returns can be motivated as somehow affecting futureinvestment opportunities. Either directly
or as a proxy for a variable that directly affects future investment opportunities. It is a relatively trivial matter to
conform the above model more to the Merton model by alowing an arbitrary number of factors that affect future
investment opportunities, as we show in the next sub-section.

For the sake of testahility, it may be useful to attempt to derive specific factors that impact future investment
opportunities. A good starting point would beto construct ageneral equilibrium model of thefactors affecting the equity
premium over time. (The next chapter will discuss general equilibrium models of thistype). These factors should then
be added to the “yield curve” factor discussed here. Another issue though is that these factors will need to be clearly
identifiable empiricaly.

A final issue is of a more technical nature. The maintained assumption was that the future risk free rate is
conditionally normally distributed. Thisassumption isnot essential. To apply Stein’s Lemmaall that is needed is that
someunderlying shock isnormally distributed. Thus, we may just assumethat theshock €, ; inequation (3) innormally
distributed. 1f we make this assumption then results will basically be unchanged. In equation (9), B, will become:

k k f f
(13) B = § Et[VWff(Vvt*l’ r“l)Fe(rt,e“l)] / g Et[VVl\(,(V\/ttl' rtf+1)]
t

K1 B[V (WS 1L )T ELFL(r e )] Kt =B [V (WS, 1 )]

Thisfollowsby applying Stein’slemmanow using €, ., asabasic variable; and subsequently by applying Stein’slemma
in reverse to return to rttl asthebasic variable. No other changes are necessary. Clearly, rtil need not be normally
distributed. For instanceif F() isan exponential function then rttl islog-normal. Notethat this“trick” can be applied
generally. The outcome thus closely parallelsthe situation in continuous time formulations. There the building blocks
must be Brownian motion which is the continuous time equivalent of a normally distributed process.

(b) Merton’s model with s state variables

Here we derive the general version of Merton's model.

(14) VKWK h) = me

G, S[k [uk(Ctk) + BkEth(\Ntlil’ h, )l

Subject to:
(15 W, = RS W - RY = R(h) + (89 [R.(h . g.,) - Ry (h)].
(16)  h,., = F(h,m.,),

with notation similar as in the previous section except that h, represents the vector of all state variables that affect
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investment opportunities; that isthe returns on all assets asindicated in equation (2).
First-order conditions for this decision problem are for each timet :

A7) u(e) = BEIRT, Viy(Wy byl

(18  E[(R.;- R DVw(Wiy, h. )] =0,
Using the definition of covariance and converting to net returns:

(19 E V(W1 he )T (g~ 1) = -Cov [ Vig(WEp hey) el
Applying Stein’s Lemma:

“E [V (WS, h
O N AP e U VL S ERLTEY U

E [V (W5, h, )]

~E[VE (WK, h )T
st B oy (hyy Fy)-
k k
E V(W1 h )]

Aggregating over al individualsk yields:

oy x ELVW(W,, hy, )]

LB Vi (W Do)l

K
f k
(“t+17r1 ) = Covt(kawhl' rt+1)

B[V (W b))
oy twn T P YY coy (hyyFy) -
k k
k=1 B [Vaw(We. 1, e )l

Thus,
(22 Wy -1l = & Cov(rTy r.y) + b Cov(hyy ry),
where:

oy £ BV R )]
a = W .

k-1 _Et[VWW(Vthil' h,. )] |

R. BALVERS, WEST VIRGINIA UNIVERSITY. 151 FOUNDATIONS OF ASSET PRICING 5/01



SECTION 2. THE INTERTEMPORAL CAPM

bt _ E El[VV\k/h (Vvtlil’ ht+1)] / § Et[VV\k/(VVthl, ht+l)]

K1 B[V (W1 R )T K1 =B [V (WS, Dy )]

One particular element of the set of all assets could be the market asset; thus:
23 W, -r', = aVar,(r") + b/ Cov(r",, h,,,).

Similarly, for any asset with return perfectly correlated with any of the state variables,
(24) u., -rl.1 = a Cov(r",, h,,,) + b/ Var(h,,,).

Use the above two equations to solvefor a, and b, :

-1
(25) (a‘l) _ Var, (/") Cov,(hy.;. o) T rtf+1
b Cov,(r?1, hy.y)  Cov(h,.,) ”?q - rtf+ll
m / m my) Y m f
(26) w1 - Cov(re.q, ri.q) Var (i) Cov,(hy, 1, rei1) Miir = T
o i Covt(ht+1' rt+1) Covt(rt”:l, ht+1) Covt(ht+1) U?q - rtf+11

Equation (26) implies alinear equation with the coefficients given as those in a multiple regression.

3. THE CoNsuMPTION CAPM

e know from the material in Chapter VI that there exists a single-beta formulation for every asset

pricing model (if arbitrage opportunities are ruled out). Breeden (1979) first discovered this

formulation for the ICAPM by taking advantage of the envelope condition in the stochastic dynamic
programming framework. Employing the same model asin the previous section, consider the implication of using the
envelope condition and rewriting thefirst-order conditions. Thisyieldsthe equivalent of equation (1.8) inthemodel with
changing investment opportunities and without a representative investor:

© VW) = ufch.

Wealth has value at the margin since it allows additional consumption at the margin (consumption smoothing implies
that just current marginal utility of consumption is sufficient to capture the marginal benefits of additional wealth). As
equation (1) shows, one may think of the marginal utility of consumption as a sufficient statistic of the separate variables
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that affect the marginal effect of wealth on lifetime utility.
Substituting equation (1) into equation (11.6) yields:

@ B DI, - 1) = —Cov, [uf(e ), rlal.

Assume that consumption of each investor is (conditionally) normally distributed. Then applying Stein’s Lemma to
equation (2) produces:

3 -ELu (S DNy - 1) = Elug (61 Cov [ 6y, rl sl

Summing over all investors after dividing by the term in front of the covariance gives:

4 (U-Ll - rtf) E M = Cov[c.y. 1]

k1 E[ug ()]

Note that the covariance term on the right-hand side now has aggregate consumption as an argument, which is clearly
the sum of consumption of all individual investors added together.

If an asset exists with return that is conditionally perfectly correlated with consumption such that c,,, = g, + h, rtﬁl,
then

. . .
®) Mg e = H Covi(ry, rly)

with:

K _E[uXck
P - )
k-1 E[ucc(ct+1)]

Applying equation (5) to the asset with return perfectly correlated with consumption:
6 W1 = HVan(ry).
Combining equations (5) and (6) then generates the Consumption-Based CAPM (or CCAPM):
M Mo 1= B (g 1), with
B.. = Cov,(r,, rtll)/ Var, (r5,) .

In empirical applicationsthe return on the asset perfectly correlated with consumption is usually taken to be the growth
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rate of consumption which is more easily observable. However, the CCAPM operationalized in this way does not
performwell. One reason might be the fact that observed consumption is not similar enough to the theoretical concept
of consumption. It is difficult for instance to measure the stream of durable good consumption services during one
period. It certainly is not equal to the amount currently spent on consumer durables. The empirical work of Mankiw
and Shapiro (1986) cal culates both amarket betaand aconsumption betafor each of 464 stocksfrom 1959-1982. When
both areincluded in across-sectional regression, the market betaclearly outperformsthe consumption betain explaining
the cross-sectional variation in returns.

If no asset exists that is closely enough correlated with consumption, equation (6) cannot be used. Instead,
define rfl = ¢,/ ¢, asthegrowth rate of aggregate consumption. Then equation (5) becomes:

) f )
(8) l"llt+1 - rt = Kt Covt(rtgl' rtl+l) ’
with:

K _E[uXck
SRR e 1CHC )
k-1 E[ucc(ct+1)]

Consider now an asset that is highly correlated with consumption. For instance, the market:
9 uh, - = K Cov(r2, 1™,
Then we find the asset pricing equation:
(100 My~ 1 = Bigpn (Mg — 1), where:
Bigm = Cov,(r?,, rl )/ Cov,(r,, r7).
Empirically, thisversion of the CCAPM isestimated using an IV technique: first regressthe growth rate of consumption

on the market return; then use the predicted value of the growth rate of consumption based on the market return to
regress against the time series of returns of each asset. Thisyields the appropriate beta.

4. STYLIZED FACTSAND PUzZLESIN DYNAMIC ASSET PRICING

erewe consider some empirical regularitiesthat are important considerationsin dynamic asset pricing
H models.

(a) The Equity Premium Puzze

Historically, market returns (the return on acomprehensive U.S. stock market index, such asthe CRSP value-
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weighted index) have exceeded the risklessrate by around 7%. Thisexcessreturn is much larger than can be explained
by the standard model leading to the CCAPM asdescribed for instancein equation (9). The standard assumption isthat
of CRRA.. Inthiscase, the only way that the data can be matched with equation (9) isif the degree of CRRA far exceeds
10. Thisconflicts greatly with typical estimates of the degree of CRRA that vary between 0.5 and 2.0. Additionally,
a CRRA of 10 [u.(c) = ¢ 10] implies such an extreme aversion to gambles that introspection reveals the
unreasonability of thisnumber. In particular, givenaninitial consumptionlevel of $10,000, for a50% chance of winning
$1000, an investor with these preferences would pay only $374 (make sure to check!).

An associated puzzleisthe fact that thereal risk freerateistoo low; around 1%. Typical asset pricing models
again haveahard timeexplaining thisfact. Theequity premium puzzlewasfirst proposed by Mehraand Prescott (1982).
Typically, proposed solutions related to liquidity constraints, habit persistence, etc., can explain the equity premium
puzzle, but then cannot explain the risk-free rate puzzle. A good survey of the current success, or lack thereof, in
explaining the puzzle is found in Kocherlakota (1996). One explanation is that the equity premium is, in fact, much
lower than 7%; Famaand French (2001) estimate an equity premium as low as around 3%.

(b) The Excess Volatility Puzzle

It iseasy tofed that stock pricesvary much more than iswarranted by movementsin fundamental s (factorsthat
determine future dividends and factors that determine the rate at which future dividends are discounted). Shiller (1981)
formalized this concern. A common explanation for high volatility isthat pricesjust react to new information. Clearly,
when the information turns out to be incorrect the stock price will return to its previous value. Thiswould be an event
that can be explained from rational behavior. However, Shiller showed that rational learning requires that the reaction
to new information should be damped: the existing information should have some weight if the new information is not
100% reliable. Based on thisreasoning, Shiller finds that the volatility of stock prices should be less than the voltility
of thefundamentals. Hetakesrealized dividends asthe fundamentals. Historical datathen show that volatility of stock
pricesisfour times as high asthe volatility of the fundamental price. Thisclearly conflicts with the rational-behavior-
based prediction that the volatility of stock prices should be less than the volatility of the fundamental price.

(c) Predictability of Returns

Famaand French (1988) and Poterba and Summers (1989) have shown that over longer horizons (one to five
years) stock prices display mean reversion. Trend reversion is probably abetter descriptor. When asset prices deviate
fromtrend they have aslow tendency torevert back totrend. A similar phenomenonisthat stock returnsexhibit negative
seria correlation: ahigh positive excessreturnwill be offset slowly by negative excessreturnsasthe price slowly reverts
to trend. Due to the fact that mean reversion is slow, it can only be picked up accurately over longer horizons.
Unfortunately, reliable long time series of stock returns, extending prior to 1926, are hard to come by. Asaresult, the
empirical tests for mean reversion lack power, and the evidence of mean reversion is controversial.

DeBondt and Thaler (1985) had previously uncovered a related phenomenon: profitability of “contrarian”
strategies. Investinginthose stocksthat have performed theworst over the previousthreetofiveyearsand shorting those
stocks that have performed the best during that period produces significant positive excess returns.
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In contrast, Lo and MacKinlay (1988) and Jegadeesh and Titman (1993) find positive autocorrelation —
“momentum” —at short horizons. Over the course of afew daysup to ahalf year or so, positive (negative) excessreturns
tend to be followed by further positive (negative) excess returns.

The empirical regularities discussed here — equity premium, excess volatility, and predictability — may have
rational explanations. However, itistempting to explain all threefrom anon-rational perspective: individualsoverreact
to risk; they also overreact to new information; as prices overreact to information they must eventually come down to
fundamental's, which implies mean reversion.
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